A Tale of Ten Bugs

Guest Lecture: Engineering Robust
Server Software

Ravi Soundararajan

Performance Team, VMware

4/12/18

mwa reo Confidential | ©2018 VMware, Inc.

The Key to Good Performance

“Make the common case fast...

..but make sure it is correct...

...and make sure uncommon cases are correct, too...”

(By the way, make sure it really is the common case)

vmware

Good Examples

Goo gle

Clean interface, fast answers

vmware

Making the Common Case Fast: VMware

Common case:
User-level code

vmware

Making the Common Case Fast: Building Design

vmware

——

~ 3110- 3146

3201 - 3219
3301 - 3363

e

T 7 /™
D

Most Likely Destination
(if you need the map)

Missing the Common Case: Taking the Train from Suburbs in Washington, DC

CASH « CREDIT » DEBIT
e & SolarTre” card, Rrecard of coss Maching providos Ghinge 1 oo cp 1o $10
Aarecard 804 5110 1 for sach trip

sunct @) BB/ S
= 4 b - Complex
AUDIO =35 557 iiTH BANK OR CREDIT CARD

NS rofviie B iy « Doesn’t leverage DC as likely destination
- B i

PRESS -
TO DEDUCT VALUE

lNSERT INSERT HERE
PAYMENT
—— wernapy TARGET TRADEN
FAF\(ECAHO

BILL RETURN

TAKE PASS/FARECARDS

COIN
RETURN

vmware

Missing the Common Case: Where Am I?

Concourse Q Directory

] foos u everaae ——

[et S Airport/Airine Facikties L Py A - e
1 Carkou ot @« rpe—— . x S — [z Elevator
. B | S o & xoresso o

0ol e Station B4 Escalator

Wad 8 Qdoba Gk hours) 2 Pano bar n 4 Suigh Tk Wielss . 5 smokiog Lounge [X] Restrooms
o 8 et (opperove) (8] g

12 Goldberg's Bagels 22 Bosrdwalk Burgers B Fries
18 Low Country b

© Sweetweter Srowhousa @ 1.5, Chang’s (upper eved 8 ATLnet = TV, Volume Contro Telphones (I Automated Emergency Defieilator (AED)
2 Vending Machines 4 Inbotion Entertsinment ones, Volume Control Telaphones B Bevstor
awik's Highiight Factory 7 Bronic

8 ChickRbA 8 tosile

Please visit our website www.atlanta-airport.com for the most up-to-date information.

Amenities and Services on the Concourses
F Concourse 8 ‘Concourse C Concourse €

Domestic Terminal Coneourse T

Help hard to find

Hartsfield-Jackss

Save As: Confusing Options

368-draft-v4 - PowerPoint

©

Save As

New

6 Ravi Soundararajan’s OneDrive EI; CompUter

Open

Current Folder

save T - Where did my simple

C: » Users » Ravi Soundararajan » Dropbox » radiol4 » preso

S XP dialogue box go?
Print + Add a Place Recent Folders
preso
Share C: » Users » Ravi Soundararajan » Dropbox » radiol4 » preso
Export iwcesp2014
My Documents » talks » iwccsp2014
Close talks
My Documents » talks
Downloads
Account C: » Users » Ravi Soundararajan » Downloads

vmware

Cardinality?

%) NewTay 2 »

Tag

Name:

Description:

Category: | New Category E2

Category

vCenter Server: W1-PEVCLOUD-001 | v |

Category Name:
: « Common case is 1.1
(=) One tag per object « Why not an advanced option?
() Many tags per obje

REEERISF V| All ohjects :

Cluster

vmware

Why is this tough to do?

A convoluted common case example

vmware

A Performance Problem

B

()

' (@)

(.

'\¢
S

VDI broker

2 Changes in VDI setup
1. Upgraded vCenter

2. Added a few new hosts

Suddenly, getting desktop (VM) is slow

vmware

VM | VM | VM | VM
VM | VM | VM | VM

vSphere hosts

vCenter

Initial Analysis

VM
(v)
I : @) o
\ [
H L= » d
§ Il
VDI broker vCenter
VM VM VM VM

Symptom: High CPU usage on vCenter
Why?
vCenter processing updates from vSphere hosts
(Observation: fewer updates in newer hosts = Virtualization HW support)

Updates ultimately cause license check = high CPU

vmware

Licensing: a red-herring?

B

o)
)\ /

: (@) O

\ / VM VM VM | VM
~ vCenter
VDI broker [— -

Why is licensing expensive?

Usually not, but miss in vCenter cache = expensive string comparison

Weird...License checks should not miss in vCenter cache ®

vmware

Cache Misses?

N\
o () o
\ /!
: (@) O

\ VM | VM VM | VM
/:_\;
s vCenter

VDI broker VM vm VM M

Why the sudden license misses?
=» Added hosts caused vCenter cache overflow

= But..vCenter cache much bigger than previous release

vmware

Resolution

N
ﬂ ol s
: @ (o)
\ \’ / VM (VM VM VM
vCenter
VDI broker AL i Ny

Good: we anticipated cache increase in vCenter

Bad: Bug in upgrade meant OLD cache size was used ®

3 big customers were impacted in the same week

vmware

Common Case Scorecard

Make the common case fast?
« Yes: Cache prevents expensive license checks

Make sure it is correct?
e Yes

Make sure it is the common case?
« Yes: License checks are the common case. BUT WHY?7?7?7????

Make the uncommon cases correct?
« No! Upgrade uncommon and wrong

vmware

Why did | show you this example?

lllustrates Complexity of Products and Debugging
« Touches entire stack from VMM all the way to VDI

Highlights Scalability
« Problem exacerbated by adding more hosts

Interesting Plot Twist: what HW do you design for?
« Problem may not have occurred if all hosts were new

vmware

Remainder of talk

9 more bugs
« Some annoying (networking)
« Some about languages (Java, C)
« Some about platforms (Linux, Windows)
« Some about hypervisors (CPU/Memory issues)

vmware

The Right Tool for the Job

A Simple Networking Performance Problem

vmware

Networking and ssh (1/4)

Basic problem: ssh is slow

loginSshSlow.avi

20s from connection attempt to asking for password

Why?

vmware

loginSshSlow.avi

Networking and ssh (2/4)

Verbose logging on server and client
 Client: ssh -vvv root@10.135.193.1 -p 1026
« Server (n.b., my sshd running on 1026): /usr/sbin/sshd -p 1026 -ddd

loginSshSlowWithVerboseServer.avi
« avi file shows just verbose server logging

Seems to be a server-side issue (duh!)

vmware

mailto:root@10.135.193.1
loginSshSlowWithVerboseServer.avi

Networking and ssh (3/4): strace and system calls

% strace -tt /usr/sbin/sshd -p 1026 -ddd
01:20:50.069828 stat("/etc/resolv.conf", {st mode=S IFREG|0644, st size=347, ...}) =0
01:20:50.069915 open("/etc/resolv.conf", O RDONLY|O CLOEXEC) = 4

REVERSE DNS LOOKUP
01:20:50.070167 read (4, "# Dynamic resolv.conf(5) file fo"..., 4096) = 347

WRONG DNS SERVER

01:20:50.070682 connect (4, {sa family=AF INET, sin port=htons(53),

sin addr=inet addr ("10.0.2.3")}, 16) = 0
01:20:50.070947 poll([{fd=4, events=POLLIN}], 1, 5000) = 0 (Timeout)
<!!! 5 SECOND GAP !!!>

01:20:55.076323 poll([{fd=4, events=POLLOUT}], 1, 0) =1 ([{fd=4, revents=POLLOUT}])
vmware

Networking and ssh (4/4)

Problem:
« Reverse DNS lookup to wrong DNS server
« Two 5s timeouts before proceeding

2 solutions:

1. lgnore DNS in sshd (ok in lab, not production)
% /usr/sbin/sshd -p 1026 -ddd -o "UseDNS no"

2. Fix DNS server setting (better!)

Trying #1 validated issue, and #2 fixed it for real

loginSshFast.avi

vmware
o

loginSshFast.avi

Java Memory Management

vmware

Java Memory Management Basics

Boot Sat af
Refarances

- |

Heachable Ohjects

Java memory management is done by the Java virtual machine
Garbage Collection: Find ‘unreachable objects’ and delete them

Diagram courtesy of http://java.dzone.com/articles/java-performance-tuning
vmware

Java Garbage Collection

“Mark, sweep, and compact” garbage collector:
« Mark: identify garbage
« Sweep: find garbage on heap, de-allocate it
« Compact: collect all live memory together

Java Memory (not including code cache)

N

OldGen

Heap

vmware

@ Headroom up t¢ max heap

OldGen: existed some time in
survivor space

Survivor: survive GC of Eden

Eden: newly-created

PermGen: class definitions, etc.

Java GC and Tuning Notes

GC for Eden is frequent and hopefully low overhead
GC for “Oldgen” is less frequent and more CPU-intensive than Eden
Rule of thumb: most (80%7?) of memory is short-lived

Many tunables in Java:
« Heap sizes (-Xms, -Xmx)
Desirable ‘free heap’ ratio
Survivor-to-Eden ratio
Type of GC (serial, concurrent, mark/sweep, etc.)
Number of GC threads
Stack size (thread stacks NOT part of heap memory)
Permgen size (not part of heap)

Profiling tools
« Yourkit, VisualVM, JMX counters, etc.

vmware

Pathological Memory Usage for a Java Process

oo | | @mxﬂmml : Min heap = max heap
N— - = Less incentive to GC

30000

25000

=~ Eden

20000} (Survivor negligible)

{ OldGen Growth: 5GB to
20GB!

| Few OldGen GCs.
Why?

15000 |

10000 |

5000 |

950 0 50 100 150 200 250 300 350 400

L 5 _
VIMWare Min = max? Usually good only if you know what you need

Fixing the pathology
10GB

10000 T T T — T
j — RES

8000 |-

6000

4000 A

RES Mem (MB)

4GB
Oldgen
(vs. 20GB),
More
Frequent
GCs.

2000

v
0 10 20 30 40 20 60

0

--Shrink max heap setting

--Do not set Xms (initial heap). Do not set initial Permgen

vmware
s

Another example with min heap = max heap
Min heap = max heap

 Commesm) (bad)

\/ !

400

Eden

_‘ generation

350

Frequent GC
ok

- Survivor
_ generation

Old generation:

_ Growing = may

be bad

300

250

200 |

150

100

| Non-heap
- (permgen, etc.)

=50 0 50 100 150 200 250 300 350 400

50|

VMW«

Fixing the JVM settings: no permgen, no min heap
cm RES Memory

~— RES

300}

250}

P
=
o

150

RES Mem (MB)

100

50

DD 10 20 30 40 50 60

Lower max heap setting

Do not set min heap and do not set permgen: overall mem
goes from ~400MB = ~150MB

vmware

CPU profiling and diamond patterns

vmware

32-bit vs. 64-bit (Thanks, R. M.!)

Benchmark run
« Build A: 100 ops/min.
« Build B: 50 ops/min.

What was the difference?
- Build A: 32-bit executable on 64-bit hardware
- Build B: 64-bit executable on 64-bit hardware

Huh?

vmware

CPU Saturation in 64-bit case

r“,c:"-.,Users"'.‘Administrator"-._Desktop"-._xperf".,pratl6029"-..168820"-.,vpxd.etl - Windows Performance Analyzer

File Graphs Trace Window Help

CPU Samplin

% Usage
100

(4}
o
O 0 RV o O O D 0 Y |

o

) 6 A I O o 0 L U L S S P A
0 20 40 &0 a0 100 120 140 160 180 200 220 p

CPU is mostly saturated (in 32-bit case, CPU is not saturated)
CPU Saturated > GOOD USE CASE FOR SAMPLING PROFILER

vmware

What _is_ xPerf?
Runs on Windows 2008-

Sampling profiler (with other cool attributes)

Records stack traces

Give caller/callee information

vmware»

Look at Sampling Profile

= [Root] 3,532,455.563 ...

|- ntdll. dll'REIUser ThreadStart 3,508,983.437 ...

|- ntdll. dilZwQueryVirtualMemory 13,762,103 969 :

|- ntkrnlmp.exe!KiSystemServiceCopyEnd 5,903.542 252 0.15
|- ntkrnlmp.exe!KiChainedDispatch 0.0z
|- ntkrnlmp.exe!KiDpcInterrupt 0.01
|- ntdll.dll! ?? ::FNODOBFM:: "~ string' 0.01
|- ntdll. dll'REImageNtHeaderEx 226.071 622 0.01
|- MSVCRBO.DLL!_RTL‘}"peid 05,035 557 0.00
i | Pay TEE | RN | FY 0 U B sl NS S T PR 1) | RS PSR P B Mid SAMA A e e Ta

Shows stacks originating from root/
Shows 87% CPU used from 1 process
But this is just the thread start routine, where threads originate

vmware

The Perils of Sampling Profilers

vmware

Stack Weight ~ % ‘Weight
3,532,612.638 ... 87.39
= [Root] 3,532,455,583 ... a87.38
= |- ntdll.dl'RtUser ThreadStart: 3,508,983.437 ...
| kernel32.dil'BaseThreadInit Thunk g 03,983 i
=] |- vpxd.exe!Win32ThreadMain 2,270,619.910 ...
| | wpxd.exel¥pxdThread:: ThreadFunc 2,270,619,910 ...
= | | |- vpxd.exe!VpxLroList:: ThreadMainEntry 2,045,997.133 ...
=1 | | |- vpxd.exe!lVpxLRO::LroMain 2,041,093.903 ...
=) |] vpxd.exelWpxactivationLlRO: : InvokeA. .. 1,571,975,867 ... 38.89
=0 L |- vmomidil'Ymomi: :ManagedMethod. .. 1,518,822.158 ... 37.57
[| | 1 | |- vmomi.dlls¥modlQueryPropert... 770,053,167 78 19.05
=o)L |- eypes.diltsimVirtualMachineDi. . 727,687,116 523 18.00
=o)L |- vpxd.exelvpxdMoym::Po... 672,630,405 844 16.64

From Root, most of the samples are from this calllstack

Most popular stack, but is this the problem?

Perils of Sampling Profilers, Part 2
Most-common trace: not necessarily where time is spent

Root >

Cal 1
,’/ ——
4/
U

-_y

1

1

1

|

4 1
I

I

I

I

I

I

@ i Path C

Path B

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
[]
U

r—==
\J

Tiny Function

vmwares

Many paths to “Tiny Function”
Maybe time spent here?

The Caller View

Look at Callers for various routines in stacks

SN ntdll, dlil'ZwQueryvirtualMemory 3,123,003, S
= |- ntdll.dllt ?? ::FNODOBFM:: " string' 3,109,241.648 ...
| |- MSYCRB0.DLL! _RTDynamicCast 1,579,519,929 ..,
® | |- MSYCR80.DLL!_RTtypeid 1,529,451.706 ...
| |- [Root] 257.005 98

| |- MSYCRB0.DLL!ICxxThrowException 13.006 609
|- [Root] 13,762,103 969
ntdll. dil'ZwQueryVirtualMemory 2.004 444

Not called a lot from root, however...
Called from few places and takes 77% CP
RTtypeid?

vmware

RTtypeid?

Callers Weight ~

vmware

MSYCRB0.DLL! _RTtypeid 1,583,683.660 ...
|- wvmacore.dli'Ymacore: :ObjectImpl: :IncRef 828,866,361 590
|- vmacore.dll'Ymacore: :ObjectImpl: :DecRef 725,473,308 729
|- MSYCR80.DLL!_RTDynamicCast 28,925,004 534
|- vpxd.exe!ManagedObjectMapper: :operator()
|- [Root]
|- wpxd.exe!WpxLRO::GetStatsContext
|- vpxd.exe!DrmModule: :SnapshotDomain
|- vmacore.dll'Ymacore: :PrintFormatter: :FormatException

10,999 304
1.002 432

HEBEEHBGEEEKMEO

Hmm. RTtypeid is use
39% of overall CPU?
IncRef and DecRef are main callers

figuring out C++ type

The Offending Code
void
ObjectImpl::IncRef ()

{
if (refCount.ReadInc() == 0) {

const type info& tinfo = typeid(*this);
FirstIncRef (tinfo);

}
typeid(): needs run-time type info (RTTI)

RTTI has pointers in it

vmware

But why is 64-bit slower than 32-bit?

Runtime type info (RTTI) has a bunch of pointers
« 32-bit: pointers are raw 32-bit pointers

« 64-bit
— Pointers are 32-bit offsets

— Offsets must be added to base addr of DLL/EXE in which RTTI resides
— Result is a true 64-bit pointer

But wait..why is addition slow?

vmware

Why |s Addition Slow? Well, it isn’t...

Addition isn’t slow, but...

Determining module base address can be slow
- To find base address, RTtypeid calls RtIPcToFileHeader

- RtIPcToFileHeader grabs loader lock, walks list of loaded modules to find RTTI data
« This can be slow

* N.B.: This is why we see calls to zwQueryVirtualMemory

For more info: http://blogs.msdn.com/junfeng/archive/2006/10/17/dynamic-cast-is-slow-
iIN-X64.aspXx

vmware

http://blogs.msdn.com/junfeng/archive/2006/10/17/dynamic-cast-is-slow-in-x64.aspx

What Did We Learn?

RtTypeld is called from a bunch of places
RtTypeld is not, however, called from Root too often

RtTypeld is small and fast: not main contributor in most stacks (except IncRef and DecRef)
Lots of little calls add up

Caller view was important here!

(btw: 2 solutions:
« 1. Statically compute base addr and cache
« 2. Use latest runtime library, which avoids RtIToPcFileHeader)

vmware

Of course, maybe we should reconsider design
Do we need multiple inheritance and dynamic_cast?

A
ﬁP
B
A
|
D

class D : public B, public C {

public:
virtual ~D();

virtual void foo();

vmware

» vptr
Bl

» vptr
C!
Dl

» vptr
A

Multiple inheritance and dynamic_casts

class B : public A { class D : public B, public C {
public: public:
virtual ~B(); virtual ~D();
virtual void foo(); virtual void foo();

b b

class C : public A {

public:
virtual ~C{(); D* ptrD = dynamic cast<D*>(ptrA);

virtual void foo();

b

Why do we use multiple inheritance?

*Store data as Object *

Upon retrieval, do dynamic_cast

Many objects need to inherit from various parents

Nice Url: http://www.drdobbs.com/cpp/multiple-inheritance-considered-useful/184402074

vmware

Mallocs, Strings, and Ints

Microbenchmarks and macro conclusions

vmware

Question: How efficient is your software?
VMware software spans many layers:

« Virtual Machine monitor
- Needs small footprint for best performance
- Any CPU cost becomes virtualization overhead: slower guests

« Kernel
« Higher-level application software
=>For best performance, apply ‘monitor’ techniques to higher-level software

vmware

RDTSC: read timestamp counter
Lets you see the number of cycles for a section of code

#1f defined(x86 64)

static inline unsigned long long rdtsc(void)
{
unsigned hi, 1lo;

__asm __volatile ("rdtsc" : "=a"(lo), "=d"(hi));

return ((unsigned long long)lo) | (((unsigned long long)hi)<<32);

#fendif

vmware

Rdtsc malloc/free test
tl = rdtsc();

for (1 = 0; 1 < num iters; 1i++) {
testFoo = (foo t *)malloc(sizeof (foo t));

free(testFoo) ;

t2 = rdtsc();

printf ("malloc/free loop 1lst time average latency: %$1lu\n", (t2-tl)/num iters);

= On average, about 50 cycles per malloc, 50 cycles per free

= Variance: occasional memory issues =2 500 cycles per iteration

= Is 50 cycles per malloc ok for you?

vmware

Malloc from glibc (a subset) (1/2)

static void *

vmware

_int malloc (mstate av, size t bytes)

{

INTERNAL SIZE T nb; /* normalized request size */
unsigned int idx; /* associated *° */
mbinptr bin; Cjea /

mchunkptr victim: "5 O" CO .uspected/selected chunk */
INTERNAL SIZE T s\’O /* its size */

int victim index; /* its bin index */

mchunkptr remainder; /* remainder from a split */
unsigned long remainder size; /* its size */

unsigned int block; /* bit map traverser */

Malloc from glibc (2/2)
/*

Convert request size to internal form by adding SIZE SZ bytes
overhead plus possibly more to obtain necessary alignment and/or
to obtain a size of at least MINSIZE, the smallest allocatable

-

size. Also, checked requestZsize traps (returnino quest sizes

that are so large that they wrap - Code @ _u and

aligned. O(e
- Lots ™

checked requestZsize (bytes, nb);
.. (lots more code) ...
The point is that malloc isn’t free.

Other options: Different malloc libraries? Custom memory management?
vimmware

Rdtsc string vs. integer compare

tl = rdtsc();

for (1 = 0; 1 < num iters; 1++) | String Comparison°

equal = strncmp(sl,s2,strlen(sl)); 81 cycles per loop

t2 = rdtsc();

tl = rdtsc(); Integer comparison:
6 cycles per loop
for (1 = 0; 1 < num iters; 1i++) {
equal = (numl == num?2);

t2 = rdtsc();

vmware

Strncmp: 81 cycles

% objdump -S -1 -C test

= equal = strncmp(sl,s2,strlen(sl));

400aa7: 48 8b 45 £0 mov Oxffffffffffff£f££f0 (Srbp), 3rax

400aab: 48 ¢c7 cl ff ff ff ff mov SOxffffffffffffffff,Srcx

400ab2: 48 89 85 20 ff ff ff mov Srax, Oxfffffffffff£££20 (Srbp)

400ab9: p8 00 00 00 00 mov $0x0, $eax

400abe: fc cld

400abf: 48 8b bd 20 ff ff ff mov OxfEfffffffff£f£f££20 (Srbp), 3rdi

400ach6b: £f2 ae repnz scas %es: (%rdi), %al

400ac8: 48 89 c8 mov Ircx, $rax

400acb: 48 £7 dO not srax

400ace: 48 8d 50 ff lea Oxffffffffffffffff (Srax), srdx

400ad2: 48 8d b5 50 ff ff ff lea Oxffffffffff£ff££50 (Srbp), $rsi

400ad9: 48 8b 7d fO0 mov Oxfffffffffffff££f0 (Srbp), rdi
vmwarg

400add: e8 76 fb ff ff callg 400658 <strncmp@plt>

Integer compare: 6 cycles

equal = (red apple six == inputNum);
400d8b: 8b 45 b0 mov Oxffffffffffffffb0 (Srbp), %eax
400d8e: 83 f£8 06 cmp $0x6, seax
400d91: 0Of 94 cO sete sal
400d94: 0f b6 cO movzbl %al, $eax
400d97: 89 45 ac mov eax, Oxffffffffffffffac (Srbp)

Straight-line code, no function calls.

= For performance, prefer ints over strings if possible

vmware

Strings and Things

Memory allocation differences between Linux and Windows

vmware

Memory differences: Linux vs. Windows
Motivation: runtime memory was 2x in Windows vs. Linux

Why?

vmware

Offsets in Windows (from windbg)

0:000> dt vpxd!VmMo -v

+0x7b8 configld : std::basic string<..>
+0x7e0 layoutId : std::basic string<..>
+0x808 layoutExId : std::basic string<..>

=>» at least 40B between strings no matter what

vmware

Offsets in Linux (from gdb)
> gdb vpxd vpxd.core

(gdb) printf "Ox%x\n", &((('VmMo' *) 0)-> configId)
O0x5f0

(gdb) printf "Ox%x\n", &((('VmMo' *) 0)-> layoutId)
Ox5£8

(gdb) printf "Ox%x\n", &((('VmMo' *) 0)-> layoutExId)
0x600

Only 8B between strings. Why?

vmware

Strings in Windows
{

std:: Container base 12 # ptr 8B

~Bx (union) { # 16B
_Buf # The string, if it fits
_Ptr # ptr to string, if not
_Alias

}

_Mysize # 8B

_Myres # 8B (reserved space)

}

-Note: 40B minimum for each instance of the string
vimmware

Windows Strings

Example from Visual Studio

4 @ [Raw View] 0x000000000026F850 {...}
4 @ std:_String_alloc<0,std{...}
4 @ std:_String_wval<std {_Bx={_Buf=0x000000000026f858 "red appled4" Ptr=0x6c70706120646
4 @ std:_Container_|{_Myproxy=0x000000000039e730 {_Mycont=0x000000000026f350 {_M
P @ _Myproxy 0x000000000039e730 {_Mycont=0x000000000026f850 {_Myproxy=0x0I

4 @R {_Buf=0x000000000026f358 "red appled" Ptr=0x6c70706120646572 <
P @ _Buf 0x000000000026f858 "red appled”
P @ _Ptr 0x6c70706120646572 <Error reading characters of string. >
P @ _Alias 0x000000000026f858 "red appled”
@ _Mysize 0x000000000000000a
@ _Myres 0x000000000000000F

vmware

Strings in Linux (from glibc documentation)
M dataplus # Default cost of any string

M p # 8B Ptr to char[] of string body

String body = 24B + sizeof (char [])

{
M length # 8B

M capacity # 8B

M refcount # 8B Reference Count

char T[] # the string (shared among instances)

}
« Important: _M_refcount allows string body sharing!

« 20 instances of string: 19 are 8B, 1is 32B + sizeof(char [])
vmware

A Sample String Body with a High Reference Count

(gdb) x/32a 0x7£05c0038fb0

O0x7£05c0038fb0: Oxf Oxf
Ox7f05c0038f<:0| Ox41f 0x726774726£707664
O0x7£05c0038£d0: 0x3830332d70756% 0x55

0x7f05c0038fe0: 0x7£05c0000158 0x7f05c0000158

_M_refcount: Ox41f = 1055 instances shared

Windows: 1055 x 40B = ~40KB

Linux: 1*40B + 1054 * 8B = ~8KB

If we had 1M objects: Windows 40MB, Linux 8MB = 32MB delta
=>» Different platforms utilize memory differently

= Be careful which libraries you use (or roll your own)

vmware
e

Connecting the Dots: A Remote Console story

vmware

User wa ntsm‘ i

‘console’ of a VM

Management serve

1. User talks to management server
2. Management server locates VM
3. User & VM get connected

VM |[VM VM VM

vmware

The Problem: Remote Console Doesn’t Show Up

Problem: could not start VM remote console in large environment

Sequence of debugging
« Client folks: it’s a server problem
« Server folks: it’s a client problem
 Client folks: it’s a ‘vmrc’ problem (vmrc = VMware Remote Console)
« VMRC folks: authentication? MKS tickets?
| got curious...

More Information: Start remote console for a single VM
« 50 Hosts, no problem

« 500 Hosts, no problem

« 1001 Hosts, PROBLEM!

vmware

No Console: Examining the Cases that Actually Work

Debugging observations
« With <1000 hosts...
« Management server CPU and memory goes very high when client invoked
« Console is dark until CPU and memory go down, then appears

« Look at server log file
- Data retrieval call occurs before console appears (WHY?77?)
- In failure cases, exception in serializer code

« Attach debugger

« Exception is an out-of-memory exception
« Exception is silently ignored (never returns to client)

vmware

No Console: Isolating the Problem

Problem
« VMRC creates a request to monitor host information (e.g., is CD-ROM attached)

« Request gets info on ALL hosts
« At 1001 hosts, we exceed 200MB buffer on server
« 200MB restriction only for old-style API clients

Solution
« VMRC folks: do NOT create big request
« Server folks: fail correctly and emit better errors

Nice lessons learned
Create APIs that are difficult to abuse, rather than easy to abuse

Teach clients how to use APIs
Make sure (internal) users have input about APl design
Be data-driven in your analysis ©

INERENES

vmware

Understanding and using metrics
Memory

vmware

Windows-Dev limits/shares example
Windows VM is really slow.

Examples:
« Bootup and login extremely slow.
« Starting up profiling tools (xperf) extremely slow

Starting point in Windows: TaskManager

vmware

In-guest metrics
In-guest: memory usage high, but CPU is fine

-

‘= Windows Task Manager o[& |3
File Options View Help

j'_ﬂ.pplications I Processes [Services } Performance ENetworking] Users l r_—

CPU Usage CPU Usage History

Memory Physical Memory Usage History

——>
——>

Physical Memory (MB) System

Total 8191 Handles 15260

Cached 944 Threads 737

Available 943 Processes 60

Free 0 Up Time 0:00:19:56

Commit (GB) 6/]15

Kernel Memory (MB)

Paged 383

Nonpaged 110 | Resource Monitor...]
Processes: 60 CPU Usage: 30% Physical Memaory: 88%

vmware

Going beyond guest-level metrics
We looked in-guest.

What about interaction of this VM with other VMs?

4 a)

SOLherOo

=—=JJIN Y
_ w S\ _/
/

Host (running hypervisor)
\

vmware

Memory Primer

VMware ESX hypervisor balances memory of VMs, etc.
- Page sharing to reduce memory footprint of Virtual Machines
« Ballooning to relieve memory pressure in a graceful way
- Host swapping to relieve memory pressure when ballooning insufficient

ESX allows overcommitment of memory

« Sum of configured memory sizes of virtual machines can be greater than physical memory if
working sets fit

vmware

Ballooning vs. Swapping (1)
Ballooning: Memctl driver grabs pages and gives to ESX
« Guest OS choose pages to give to memctl (avoids “hot” pages if possible): either free
pages or pages to swap

- Unused pages are given directly to memctl
- Pages to be swapped are first written to swap partition within guest OS and then given to memctl

VM1 VM2

(memctc /B s cecam
a ’ 3. Redistribute a

e

- . v..--.... >
Swap partition w/in \
Guest OS
1. Balloon \ ESX

vmware

Ballooning vs. Swapping (2)
Swapping: ESX reclaims pages forcibly

- Guest doesn’t pick pages..ESX may inadvertently pick “hot” pages (=2 possible VM
performance implications)

- Pages written to VM swap file

VM2

Y

Swap s
Partition | > ESX | 1. Force Swap

VSWP (w/in 2. Reclaim
(external to guest) ~ guest) 3 Redistribute

vmware

Ballooning vs. Swapping: Bottom Line

Ballooning may occur even when no memory pressure just to keep memory proportions
under control

Ballooning is vastly preferably to swapping

- Guest can surrender unused/free pages

- With host swapping, ESX cannot tell which pages are unused or free and may accidentally pick “hot”
pages

« Even if balloon driver has to swap to satisfy the balloon request, guest chooses what to

swap
- Can avoid swapping “hot” pages within guest

vmware

Back to my VM: Let’s look at ballooning

VM is ballooning! It reaches its threshold...

vmware

Memory/Real-time, 10/7/2013 12:23:20 PM - 10/7/2013 1:23:20 PM Chart Options... Switchto: |Memory _v_' Q ((R) Fl
Graph refreshes every 20 seconds
~ 9000000 4000
=) / -1
.F{ 4500000 T t --2000
g /
wn |
/ | z /
iy — r i i ~¢/--
12:25 PM 12:35 PM 12:45 PM 12:55 PM 1:05 PM 1:15PM
Time
Performance Chart Legend
Key | Object | Measurement | Rollup | Units Latest | Maximum | Minimum | Average |
1] Windows7-dey Granted Average Kilobytes 6487340 8148800 2248651.6
| Windows7-dev Consumed Average Kilobytes 1961788 2363108 0 765293.72
Windows7-dev Balloon Average Kilobytes 1730272 545229 0 4209305.9]
] Windows7-dey Swap in Average Kilobytes 3103304 3103304 0 1578085.8
= Windows7-dev Active Average Kilobytes 3262584 6543112 0 2743647.0
| Windows7-dev Swap in rate Average KBps 17 3111 0 988.057

sdgy

Swap-in
And then the VM starts to do host-level swap

Memory/Real-time, 10,/7/2013 12:21:00 PM - 10,/7,/2013 1:21:00 PM Chart Options,.. Switch bo: |Memoaory j % @ H
Graph refrashes every 20 seconds

— 2000000

45200000

sajiqopn

ma]

1] I i i i
1225 PM 12135 PM 12:45 PM 12:55 PM 1:0s PM 1115 PM

Time

Performance Chart Legend

Key | Object | Measurement | Rellup | Units Latest | Madmum | Minimum | Average
7] Windows7-dey Granked Average Kilobwtes 7319140 g145300 0 2004035.9
= Windows7-dey Consumed AveErans Kilobykes 516100 2363105 0 7a0484.02
| Windows7-dey Balloon Aerane Kilobykes 1] 5452296 0 433277001
Ii Windows7-dew Siap in Averane Kilabykes 3075525 3075525 0 1507849.2
| Windows7-dew Active Average Kilobwtes 4613732 A543112 0 2671805.3

Host-level swap impacts performance...
vimware

Fine-grained metrics
Check if other VMs are encountering same issue

GID MAME MEMS 2 GRANT SZTGT TCHD TCHD W SWCUR SUTGT
63283 VCOVA-5.5-bld236 16354.00 14412.00 15374.60 191, 52 .00
5 winZkS-ri-prod: 16354.00 16384.00 16501.00 191, 52 .00
vESimS. 1-for-¥C 16354.00 1t : =T 0. .00
87 SILES11 o192 .00 3G L 097, 3. 1. L i

5 Window=s7-dew S19:2 .00 R F. a0 f35. 55 130,12 a0, 44

(esxtop, a top-like utility specifically for ESX hosts)
No other VMs are hitting host-level swapping...
Hmm.

Oh, wait!

vmware

Accidentally set limit on VM!

If you set a limit on a VM, it cannot exceed the limit

[Windows7-dey - ¥irtual Machine Properties

Hardware | Options Resources I Profiles | vServices | Virtual Machine Yersion: 7
Settings | Summary || —Resource allocation
CPU 0 MHz :
Memary OMB | Shares: Normal | 81920 3
Disk MNormal . { .
Reservation: 0 3. MB

Advanced CPU HT Sharing: Any ‘é

—[J e

I Unlimited
£ Limit based on parent resource pool or current host

= We configured the VM with 8GB RAM, but set a limit of 1GB!
(btw., this was because | accidentally cloned a VM with a limit...)

(note: our tools track LIMIT, but | didn’t show it on previous slides)
vimware

Understanding metrics, part 2
CPU

vmware

Hypervisor CPU Scheduling
Wait/Idle

==]
-

VM4

Ready

Run (accumulating used time)
Ready (wants to run, no physical CPU available)
Wait: blocked on I/O or voluntarily descheduled

vmware

A customer problem...

Problem
« Customer Performs a Load Test: keeps attaching clients to a server
« At some point, CPU is NOT saturated, but latency starts to degrade
« At some point, client is unusable
« Why?

vmware

“Oh yeah, it’s a disk problem...”

_—

100

\CPU Usage Increases...

—_—

Last 27 Average 11 Minimurn 0 Maximurn 288 Durati 2:09:12

Uh-oh! Disk Latencies go over a cliff!

vmware

Hmm. Not So Fast!!!
Problem:

Yes, Disk Latency gets worse at 4pm. (btw..due to swapping)

However, Application latency gets worse at 3:30pm!

What's going on from 3:30pm to 4pm?

vmware

Looking at a different chart...

ID GID NAME NWLD 3USED 5 RUN
1 idle

s SYSLTEexn

(42
O O O B
(41
A
=
e
g
-
A
. . o)
)
=
A
! Rl
o
) R
i =1
A

6 helper

OO O O ES

{ driwvers

w0 .-'_‘._'. -
)

8 wVmotion

M <
(w1
T

console

 vinkapimod
/ FT
o vobd.4279

9 net-cdp.4287

I S =)

1 W0n
]—.A

B o B B |

voware—-vikauthd
vm]
vm?2
vm3
vm4

noooogoo

CUR SN |

w o O
-] 00 q

e &L

W =] 0N O 00 0O (

= O

(g O Y o B oy O o i o I S g I

O
(g (=Y [
==

0
f 1

%Used? %Run? What’s the difference?

%used: normalized to base clock frequency

%run: normalized to clock frequency while VM is running...

%run > %used: Power Management is kicking in...

In this case, turn off power management—->latency problems go away

vmware

End-to-End Performance
Interactions between hypervisors and guests

vmware

Viewing a Video Remotely: Jittery Experience
*interrupt-coalescing-nofix.mov

-Observation: bimodal latencies in 3D graphics workload
« Needs 80Mbps at peak
When it reached 80Mbps at peak, dropped down to 30Mbps
Went back up to 80Mbps
Dropped to 30Mbps
Repeat...

vmware

interrupt-coalescing-nofix.mov

Packet transmission in virtualized environment

Guest gives packet to vnic

vmware

Packet transmission in virtualized environment

Guest gives packet to vnic

vmware

Packet transmission in virtualized environment

ESX kernel polls queue, sends pkt to pnic

vmware

Packet transmission in virtualized environment

After pkt is sent, ESX gives xmit
interrupt to guest

Transmit
interrupt

vmware

Coalescing

When high guest pkt rate is seen,
ESX waits for more packets before
sending

vmware

Coalescing

When high guest pkt rate is seen,
ESX waits for more packets before
sending

vmware

Coalescing

ESX sends transmit interrupt to
guest when all packets sent

Transmit
interrupt

vmware

Coalescing in guest causing issues

Our Coalescing Problem:

1.

vmware

Guest waits for Transmit
interrupt before depositing new
packet

ESX waits for new packet before
sending out

Coalescing and Windows

After timeout, ESX sends 1 packet
Resulting slow packet rate = ESX
disables coalescing

Cycle repeats..

Transmit
interrupt

vmware

Video playback in Windows: Why Oscillation in Latency?
Desired Behavior

« Guest sends packet by giving data to vmnic

« Hypervisor polls receive queue

« When packet detected, hypervisor sends packet

« Hypervisor sends transmit interrupt to guest (packet has been delivered)

Actual Behavior
« Hypervisor interrupt coalescing kicks in at high packet rate
« Guest would not send packet until it received transmit interrupt
« Both sides wait, timeout in hypervisor, interrupts get sent = drop to 30Mbps
« Packet rate drops, interrupt coalescing disabled = achieve 80Mbps

vmware

Fix for Oscillation in Latency
Fix:

« Known issue in Windows for certain packet sizes
- Disable Windows registry to avoid waiting for transmit interrupt

interrupt-coalescing-withfix.mov

Microsoft KB article:
« http://support.microsoft.com/klb/235257

VMware KB article;

« http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&exter
nalld=2040065

vmware

interrupt-coalescing-withfix.mov
http://support.microsoft.com/kb/235257
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2040065

Bringing it all together

vmware

An interesting link

Performance anti-patterns

http://queue.acm.org/detail.cfm?id=1117403

Some examples:
‘Fixing Performance at the end of the project
‘Algorithmic antipathy: O(k) vs. O(n)
‘Focusing on what you can see rather than the problem
« Disk IO is high
« Option 1 (BAD) Workload needs |O: tell customer to add more spindles

« Option 2 (BETTER) Find source of IO and eliminate it if possible

‘Not optimizing for the common case

vmware

http://queue.acm.org/detail.cfm?id=1117403

Parting Thoughts

Performance debugging is a system-wide exercise

Don’t blindly optimize resources: take a broader view of architecture as well

Don’t take down fences unless you know why they were put up

Make the common case fast (but make sure it is also correct!)

vmware

