
The Seven Steps
A Technique for Translation from Problem to Code
Andrew Hilton, Genevieve Lipp, and Susan Rodger
Duke University, ECE and CS Departments
adhilton@ee.duke.edu, genevieve.lipp@duke.edu, rodger@cs.duke.edu

Step 5: 
Translate to code

Success!

Program 
appears 
correct

Program is
incorrect

Algorithmic 
problem

Step 6:
Test 

program

Step 7:
Debug 

program

Implementation
problem(3) Generalize 

your steps 
from (2)

(2) Write down 
exactly what 
you just did

(1) Work an 
instance 
yourself

(4) Test 
your 
steps

Can’t find pattern

Identified problem

Problem and Goal
Novice programmers often struggle to take a problem statement and turn

it into working code [1,2]. This struggle arises from the need to both devise
an algorithm to solve a class of problems, as well as to turn that algorithm
into working code.

Several factors contribute to these difficulties:

• Students focus on memorization, not problem solving.

• Students lack a problem solving methodology.

• Finished examples do not show the process.

Our goal is to provide students with a methodology they can follow from
problem statement to working code. In particular, such a methodology
should:

• Recognize that students may struggle and provide direction for how
to proceed in such a case.

•Work on any programming problem.

• Focus on problem solving and algorithm development.

• Include testing and debugging.

The Seven Steps
We call our methodology The Seven Steps, as it is a seven-step process

for students to follow. The diagram in the upper-right corner shows these
steps at a high level.

Step 1: Work an Example
The first step is to work one instance of the problem by hand. The
student should not try to generalize to all possible parameter val-
ues at this point—they should simply solve one particular instance.

For example, if the problem statement is
“Write a program that, given a set of points
S and a point P , finds the point in S that
is closet to P ,” then a student should se-
lect a particular set S (e.g., {(2, 7), (10, 5),
(8,−2), (7,−6), (−3,−5), (−8, 0), (−5, 6)})
and a particular point P (e.g. (1,−1)).

If a student cannot do this step, then either (a) they lack domain knowledge
or (b) the problem is not stated clearly. Remedying (a) requires consult-

ing a source of domain knowledge, while remedying (b) requires obtaining
clarification on the problem.

Step 2: Write Down What You Did
The second step is to write down precisely what was done in Step 1. The
most common way for novice programmers to get stuck at this step is to say
“I just did it—I don’t know how.” In such a situation, they should work a
slightly more complex example where the solution is not immediately ap-
parent.

Another common problem in this step is that students omit instructions
and/or write ambiguous directions. Such mistakes do not cause a student
to get stuck here, but they cause problems that show up in Step 4. These
problems are what instructors teach about with the common “Peanut Butter
and Jelly” activity.

Step 3: Generalize
In Step 3, the student should generalize from the specific values they used
in Step 1 to any values of the parameters. This step involves several com-
ponents, such as generalizing specific values, naming values, identifying
repetition, and making “almost repetitive” steps into uniform steps.

Students who get stuck here should repeat Steps 1 and 2 with different pa-
rameters to help see the pattern. We also encourage students to split their
generalization into specific questions, and to make tables to identify pat-
terns.

We note that this step is the hardest and that we explicitly tell students this
is the hardest part when we introduce the process.

Step 4: Test by Hand
Step 4 is to test your algorithm by hand. Students should pick different val-
ues for the parameters that were not used in Steps 1–3 and execute their
algorithm step by step with pencil and paper. If the answer is incorrect, they
should revisit their generalization from Step 3.

Step 5: Translate to Code
Now students are ready to translate their algorithm into code. Any step that
is too complex to translate into one or two statements should become its own
function: students repeat the Seven Steps for that function and call it in this
algorithm.

Step 6: Test

Step 6 is to test the program, by running actual test cases on the code. If a
test case fails, students proceed to Step 7. If no test cases fail (and the stu-
dent has sufficient test cases to convince themself that the code is correct),
they declare success and are done.

Step 7: Debug

Step 7 is to debug failed test cases. We teach debugging as an application
of the scientific method. Debugging will either identify a problem with the
underlying algorithm (in which case students should return to Step 3), or
with the translation to code (in which case students should return to Step 5).

Uses and Results
We use The Seven Steps extensively in ECE 551, as well as two Cours-

era specializations. CS 101 has begun to adopt the approach based on the
successes observed in these courses. One CS 101 student sent the following
e-mail about The Seven Steps:

I just want to tell you that I tried the seven step method, and I worked
on all of my code for one or two hours before I even looked at the com-
puter. AND IT WORKED! I got all my code right on the first try! For
the first time ever, I don’t have to go to the help lab for hours on end. I
just wanted to tell you how satisfied I am. Yay! Have a good day and
thank you for re-teaching me the strategy.

A learner in one of our Coursera specializations wrote:

I have been programming for couple of years. Learned from so many
resources but none said how to write the algorithm, they just say you
should write your algorithm first. The steps illustrated here are beauti-
ful and definitely help to understand how to decompose a problem.

References
[1] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm,

Robert McCartney, Jan Erik Moström, Kate Sanders, Otto Seppälä, Beth Simon, and Lynda Thomas. A
multi-national study of reading and tracing skills in novice programmers, an iticse 2004 working group
report. SIGCSE Bulletin, 36(4):119–150, December 2004.

[2] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Ko-
likant, Cary Laxer, Lynda Thomas, Ian Utting, , and Tadeusz Wilusz. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students, an iticse 2001 working group report.
SIGCSE Bulletin, 33(4):125–140, December 2001.


