
ECE551
Final

Name: NetID:

There are 8 questions, with the point values as shown below. You have 175 minutes with a
total of 115 points. Pace yourself accordingly.

This exam must be individual work. You may not collaborate with your fellow students.
However, this exam is open book and open notes. You may use any printed materials, but
no electronic nor interactice resources.

I certify that the work shown on this exam is my own work, and that I have
neither given nor received improper assistance of any form in the completion of
this work.

Signature:

Question Points Earned Points Possible

1 Multiple Choice 10

2 Concurrency 10

3 Data Structure Concepts 12

4 OO Implementation 15

5 Algorithmic Basics 12

6 Coding 1 12

7 Coding 2 22

8 Coding 3 22

Total 115

Percent 100

1

Question 1 Multiple Choice [10 pts]

1. Which data structure can implement a Map or Set ADT with O(1) amortized access
time?

(a) Linked List

(b) Min-Heap

(c) Max-Heap

(d) Graph

(e) Hash Table ←

2. Which of the following is detrimental to code maintainability?

(a) Code Duplication ←
(b) Object Oriented Design

(c) Abstraction

(d) Dynamic Dispatch

(e) None of the Above

3. Which of the following accurately describes pointers?

(a) Variables which change how method calls are dispatched

(b) Variables which cannot be modified once an initial value is set

(c) Variables whose value is actually a function

(d) Variables whose value represents the memory location of some other piece of data
←

(e) None of the Above

2

4. What is the main dis-advantage of merge sort?

(a) Its worst case running time is O(N2)

(b) Its average case running time is O(N2)

(c) It requires allocating extra space for temporary arrays←
(d) It requires very complex operations at each step which take a long time.

(e) None of the Above

5. Which algorithmic category best describes Prims’s MST algorithm?

(a) Dynamic Programming

(b) Brute Force

(c) Genetic

(d) Greedy ←
(e) None of the Above

3

Question 2 Concurrency [10 pts]

1. Briefly explain the concept of a “thread.”

Answer:
A thread is an execution context within a process. Each thread has its own “execution
arrow” (formally known as “program counter”), stack, and registers. If multiple threads
exist within one process, they share the address space (and thus may reference the same
data easily).

2. Briefly explain what a race condition is.

Answer:
A race condition is when the interleaving of multiple threads’ executions affect the
results of the program (typically in adverse ways).

3. Explain how a concurrent program protects against race conditions.

Answer:
A programmer should protect against race conditions by making use of synchronization
primitives such as locks, condition variables, and barriers.

4

Question 3 Data Structure Concepts [12 pts]
Show the results of performing each of the following operations on the shown data structures:

1. Add 77 to the following max-heap

99

77 85

65 32 14 16

8 12

2. Remove the maximum element from the following max-heap:

85

65 16

12 32 14 8

5

3. Add 7 to the following (regular, un-balanced) BST

14

10 99

8 34

2 43

7

4. Remove 14 from the BST in the previous part (before you added 7).

10

8 99

2 34

43

34

10 99

8 43

2

OR

6

Question 4 OO Implementation [15 pts]
Suppose I have the following class:

class A {

public:

int x;

int y;

virtual void foo() { /* code */ }

virtual int bar(int x) { /* code */ }

};

1. Write an equivalent C struct (you may write the type of the vtable as void **).

struct _A {

void ** vtbl;

int x;

int y;

};

2. Suppose that foo is in element 0 of the vtable, and bar is in element 1, and that x is
declared as an A*. Translate x->bar(3); to C. You may assume that intFnPtr has
been typedefed as a pointer to a function taking of the appropriate type for bar (you
can call a function via a pointer just like you can call a function via its name—its name
is just a pointer to the function):

intFnPtr temp = x->vtbl[1];

temp(x,3); //pass x as "this"

3. If we inherit from a class virtually, what additional information must be placed in the
vtable?

Answer:
The offset to the virtually inherited parent sub-object.

7

Question 5 Algorithmic Basics [12 pts]
The diagrams shown beloware the result of executing an algorithm which has one parameter,
N, which must be a non-negative integer, and colors boxes (grey or black) on a 10x10 grid of
white squares. For values of N from 0 to 5, the algorithm produces the following patterns.

N=0 N=1 N=2

N=3 N=4 N=5

Write down the algorithm used to generate these patterns in a clear, step-by-step fashion,
which could be directly translated to code.

Answer:
Count from 0 (inclusive) to N (exclusive), call each number you count “i” and

Count from i (inclusive) to N (inclusive), call each number you count “j” and
if (i + j is multiple of 3) then

place a black square at (i,j)
else

place a grey square at (i,j)

8

Question 6 Coding 1 [12 pts]
Write the sumEven function in the following LinkedList class (which only holds ints). This
function should return the sum of all of the even elements of the list. For example, if the
list held 1,5,6,7,9,12 then this function should return 6+12=18.

class LinkedList {

private:

class Node{

public:

Node * next;

int data;

Node(int _data): next(NULL), data(_data) {}

Node(int _data, Node * _next): next(_next), data(_data) {}

};

Node * head;

public:

int sumEven() {

Node * curr = head;

int total = 0;

while (curr != NULL) {

if (curr->data % 2 == 0) {

total += curr->data;

}

curr = curr->next;

}

return total;

}

};

9

Question 7 Coding 2 [22 pts]
Suppose you have already written a templated Map class, with the following interface:

template<class K, class V>

class Map {

public:

Map();

void add(const K& key, const V& val);

V find(const K& key) const;

void remove(const K& key);

class const_iterator {

iterator & operator++();

const pair<K&,V&> operator*();

bool operator==(const const_iterator & rhs);

bool operator!=(const const_iterator & rhs);

};

const_iterator begin() const;

const_iterator end() const;

};

and you also have the following abstract Function class:

template<class R, class A>

class Function {

public:

virtual R invoke(A arg) =0;

};

Write a function which re-maps all of the keys in a Map, creating a new Map which has
exactly the same keys as the first, but whose values are computed from a re-mapping function,
which is passed in as a Function object. Specifically, if the original Map has the (key,value)
pair (k,v) then the output map should have(k,f(v)) where f is the function represented by
the Function object passed in.

(answer on the next page)

10

template<class K, class V1, class V2>

Map<K,V2> * remap(Map<K,V1> * inMap, Function<V2,const V1 &> * f){

Map<K,V2> * answer = new Map<K,V2>();

Map<K,V1>::const_iterator it = inMap->begin();

while (it != inMap->end()) {

answer->add((*it).first, f->invoke((*it).second));

++it;

}

return answer;

}

11

Question 8 Coding 3 [22 pts]
Suppose you have the following BinaryTree class (which holds ints):

class BinaryTree {

private:

class Node {

public:

int data;

Node * left;

Node * right;

};

Node * root;

public:

//constructors, destructors, other methods not shown

bool hasPathSum (int target) {

//you will write this

}

};

You must write the hasPathSum method which determines if the BinaryTree has a continu-
ous sequence of items along a path which sum to the specified target. For example, in the
BST from Question 3, part 3, path sum of 20 may be formed by 10+8+2, however, a path
sum of 16 may not be formed by 14+2 since they are not in a contiguous path. You may
write any helper methods you wish. We do not care about efficiency, only correctness.

(answer on the next page)

12

class BinaryTree {

//everything else omitted to give you space to write

bool hasPathSum(const Node * curr, int currSum, int target) {

if (target == currSum) {

return true;

}

if (curr == NULL) {

return false;

}

//Simplest solution: question says to ignore efficiency.

return (hasPathSum(curr->left, currSum + curr->data, target) ||

hasPathSum(curr->right, currSum + curr->data, target) ||

hasPathSum(curr->left, curr->data, target) ||

hasPathSum(curr->right, curr->data, target));

}

bool hasPathSum (int target) {

return hasPathSum(root, 0, target);

}

};

13

