
Andrew Hilton / Duke ECE

Engineering Robust Server
Software

Scalability

Andrew Hilton / Duke ECE

Intro To Scalability
• What does scalability mean?

2

Andrew Hilton / Duke ECE

Intro To Scalability
• What does scalability mean?

3

High scale-abilityLow scale-ability

Andrew Hilton / Duke ECE

Intro To Scalability

• What does scalability mean?

• How does performance change with resources?

4

La
te

nc
y

(u
se

c)

0

25

50

75

100

Compute Resources

1 2 4 8 16

Design 1 Design 2

Andrew Hilton / Duke ECE

Intro To Scalability

• What does scalability mean?

• How does performance change with resources?

• How does performance change with load?

5

La
te

nc
y

(u
se

c)

0

50

100

150

200

Competing Requests

0 10 100 1K 10K

Design 1 Design 2

Andrew Hilton / Duke ECE

Scalability Terms
• Scale Out: Add more nodes

• More computers

• Scale Up: Add more stuff in each node

• More processors in one node

• Strong Scaling: How does time change for fixed problem size?

• Do 100M requests, add more cores -> speedup?

• Weak Scaling: How does time change for fixed (problem size/core)?

• Do (100*N)M requests, with N cores -> speedup?

6

Andrew Hilton / Duke ECE

Amdahl's Law

7

Speedup (N) = S + P

S + P
N

Andrew Hilton / Duke ECE

Amdahl's Law

8

Speedup (N) = S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
6 + 4

6 + 4
N

Andrew Hilton / Duke ECE

Amdahl's Law

• 10/8 = 1.25x speedup = 25% increase in throughput.
• 8/10 = 0.8x = 20% reduction in latency

9

Speedup (N) = S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
6 + 4

6 + 4
2

Speedup 2x

=
10

8

Andrew Hilton / Duke ECE

Amdahl's Law

10

Speedup (N) = S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
6 + 4

6 + 4
4

Speedup 4x

=
10

7

• 10/7 = 1.42x speedup = 42% increase in throughput.
• 7/10 = 0.7x = 30% reduction in latency

Andrew Hilton / Duke ECE

Amdahl's Law

11

Speedup (N) = S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
6 + 4

6 + 4

∞

Speedup ∞x

=
10

6

• 10/6 = 1.67x speedup = 67% increase in throughput.
• 6/10 = 0.6x = 40% reduction in latency

Andrew Hilton / Duke ECE

Amdahl's Law

• Anne Bracy: "Don't try to speed up brushing your teeth"

• What does she mean?

12

Pe
rc

en
t

In
cr

ea
se

 In

Th
ro

ug
hu

t

0

17.5

35

52.5

70

Speedup of Parallel Portion

1 2 4 8 16 Infinity

P=40% P=20% P=10%

Andrew Hilton / Duke ECE

Why Not Perfect Scalability?

• Why don't we get (Nx) speedup with N cores?

• What prevents ideal speedups?

13

La
te

nc
y

(u
se

c)

0

25

50

75

100

Compute Resources

1 2 4 8 16

Design 1 Design 2

Andrew Hilton / Duke ECE

Impediments to Scalability

14

• Shared Hardware

• Functional Units

• Caches

• Memory Bandwidth

• IO Bandwidth

• …

• Data Movement

• From one core to another

• Blocking

• Locks (and other synchronization)

• Blocking IO

Andrew Hilton / Duke ECE

Impediments to Scalability
• Shared Hardware

• Functional Units

• Caches

• Memory Bandwidth

• IO Bandwidth

• …

• Data Movement

• From one core to another

• Blocking

• Blocking IO

• Locks (and other synchronization)
15

Let's talk about these for now

Andrew Hilton / Duke ECE

Hypothetical System

16

Core A core has 2 threads (2-way SMT)
 - Also private L1 + L2 caches (not shown)

Andrew Hilton / Duke ECE

Hypothetical System

17

4 cores share an LLC
 - Connected by on chip interconnectCore Core Core Core

LLC

Andrew Hilton / Duke ECE

Hypothetical System

18

We have a 2 socket node
 - Has 2 chips
 - DRAM
 - Also some IO devices (not shown)

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Hypothetical System

19

We have 2 nodes
Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Hypothetical System

20

Suppose we have
2 requests: where
best to run them?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Hypothetical System

21

Different threads
on same core?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Hypothetical System

22

Different cores
on same chip?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Hypothetical System

23

Different chips on
same node?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Hypothetical System

24

Different nodes?
Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

How To Control Placement?
• Within a node: sched_setaffinity

• Set mask of CPUs that a thread can run on

• SMT contexts have different CPU identifiers

• In pthreads, library wrapper: pthread_setaffinity_np

• Across nodes: depends..

• Daemons running on each node? Direct requests to them

• Startup/end new services? Software management

• Load balancing becomes important here

25

Andrew Hilton / Duke ECE

Tradeoff: Contention vs Locality

• Trade off:

• Contend for shared resources?

• Longer/slower communication?

26

Increasing Contention

Increasing Communication Latency

Sa
m

e
Co

re

Sa
m

e
Ch

ip

Sa
m

e
N

od
e

D
if

fe
re

nt
 N

od
e

Andrew Hilton / Duke ECE

Tradeoff: Contention vs Locality

27

Increasing Communication Latency

Sa
m

e
Co

re

Sa
m

e
Ch

ip

Sa
m

e
N

od
e

D
if

fe
re

nt
 N

od
e

Loads + Stores
Same Cache
1s of cycles

Loads + Stores
On Chip Coherence
10s of cycles

Loads + Stores
Off Chip Coherence
100s cycles

IO Operations
Network
Ks-Ms of cycles

Andrew Hilton / Duke ECE

NUMA

28

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

• Non Uniform Memory Access (NUMA—technically, ccNUMA)

• Memory latency differs depending on physical address

• migrate_pages, mbind: control physical memory placement

Andrew Hilton / Duke ECE

Tradeoff: Contention vs Locality

29

Increasing Contention

Sa
m

e
Co

re

Sa
m

e
Ch

ip

Sa
m

e
N

od
e

D
if

fe
re

nt
 N

od
e

Andrew Hilton / Duke ECE

Re-examine Our Hypothetical System

30

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Andrew Hilton / Duke ECE

Tradeoff: Contention vs Locality

31

Increasing Contention

Sa
m

e
Co

re

Sa
m

e
Ch

ip

Sa
m

e
N

od
e

D
if

fe
re

nt
 N

od
e

- External network b/w
- Datacenter cooling

- Memory b/w
- Chip<-> chip b/w
- IO b/w- On chip b/w

- LLC capacity
- On chip cooling- L1/L2 capacity

- Functional Units

Andrew Hilton / Duke ECE

Interactions Between Resource Contention
• Suppose two threads need + are sensitive to:

• LLC Capacity

• Memory bandwidth

• What happens when we run them together?

32

Andrew Hilton / Duke ECE

Interactions Between Resource Contention
• Suppose two threads need + are sensitive to:

• LLC Capacity

• Memory bandwidth

• What happens when we run them together?

• Contention for LLC -> more cache misses

• Slows down program, but also…

33

Andrew Hilton / Duke ECE

Interactions Between Resource Contention
• Suppose two threads need + are sensitive to:

• LLC Capacity

• Memory bandwidth

• What happens when we run them together?

• Contention for LLC -> more cache misses

• Slows down program, but also…

• Increases memory bandwidth demands

• Which we already need and are contending for :(

34

Andrew Hilton / Duke ECE

Interactions Between Resource Contention
• Suppose two threads need + are sensitive to:

• LLC Capacity

• Memory bandwidth

• What happens when we run them together?

• Contention for LLC -> more cache misses

• Slows down program, but also…

• Increases memory bandwidth demands

• Which we already need and are contending for :(

• Interactions can make contention even worse!

• Is there a flip side?
35

Andrew Hilton / Duke ECE

Improved Utilization
• Can improve utilization of resources

• One thread executes while another stalls

• One thread uses FUs that the other does not need

• Pair large cache footprint with small cache footprint

• Shared code/data: one copy in cache

36

Andrew Hilton / Duke ECE

Performance/Scalability 1
• So how do we improve things?

37

Andrew Hilton / Duke ECE

Performance/Scalability 1
• So how do we improve things?

• Profile our system! Understand what is slow and why

• Remember: Ahmdal's law!

38

Andrew Hilton / Duke ECE

Intro To Scalability

39

La
te

nc
y

(u
se

c)

0

50

100

150

200

Competing Requests

0 10 100 1K 10K

Current Design

This graph hides a lot of important detail

Andrew Hilton / Duke ECE

Intro To Scalability

40

La
te

nc
y

(u
se

c)

0

50

100

150

200

Competing Requests

0 10 100 1K 10K

Current Design

Breaking it down shows WHERE to focus our optimization efforts

Receive Data
Authenticate
Query
Produce Output
Send Results

Andrew Hilton / Duke ECE

Performance/Scalability 1
• So how do we improve things?

• Profile our system! Understand what is slow and why

• Remember: Ahmdal's law!

• After making a change, what do we do?

41

Andrew Hilton / Duke ECE

Performance/Scalability 1
• So how do we improve things?

• Profile our system! Understand what is slow and why

• Remember: Ahmdal's law!

• After making a change, what do we do?

• Measure impact: did we make things better? How much?

42

Andrew Hilton / Duke ECE

Performance/Scalability 1
• So what can we do?

• Optimize code to improve its performance

• Transform code to improve resource usage (e.g. cache space)

• Pair threads with complementary resource usage

43

Andrew Hilton / Duke ECE

Performance/Scalability 1
• So what can we do?

• Optimize code to improve its performance

• Transform code to improve resource usage (e.g. cache space)

• Pair threads with complementary resource usage

• Sounds complicated?

• Learn more about hardware (e.g., ECE 552)

• Take Performance/Optimization/Parallelism

44

Andrew Hilton / Duke ECE

Impediments to Scalability
• Shared Hardware

• Functional Units

• Caches

• Memory Bandwidth

• IO Bandwidth

• …

• Data Movement

• From one core to another

• Blocking

• Blocking IO

• Locks (and other synchronization)
45

Let's talk about this next

Andrew Hilton / Duke ECE

Never Block
• Critical principle: never block

• Why not?

46

Andrew Hilton / Duke ECE

Never Block
• Critical principle: never block

• Why not?

• Can't we just throw more threads at it?

• One thread per request (or even a few per request)

• Just block whenever you want

47

Andrew Hilton / Duke ECE

Never Block
• Critical principle: never block

• Why not?

• Can't we just throw more threads at it?

• One thread per request (or even a few per request)

• Just block whenever you want

• Nice in theory, but has overheads

• Context switching takes time

• Switching threads reduces temporal locality

• Threads not blocked? May thrash if too many

• Threads use resources
48

Andrew Hilton / Duke ECE

Non-Blocking IO
• IO operations often block (we never want to block)

• Can use non-blocking IO

49

Andrew Hilton / Duke ECE

Non-Blocking IO
• IO operations often block (we never want to block)

• Can use non-blocking IO

• Set FD to non-blocking using fcntl:
int x = fcntl(fd, F_GETFL, 0);

x |= O_NONBLOCK;

fcntl(fd, F_SETFL, x);

• Now reads/writes/etc won't block

• Just return immediately if can't perform IO immediately

• Note: not magic

• ONLY means that IO operation returns without waiting

50

Andrew Hilton / Duke ECE

Non-Blocking IO: Continued

51

int x = read (fd, buffer, size);
if (x < 0) {
 if (errno == EAGAIN){
 //no data available
 }
 else {
 //error
 }
}

Andrew Hilton / Duke ECE

Non-Blocking IO: Continued

52

int x = read (fd, buffer, size);
if (x < 0) {
 if (errno == EAGAIN){
 //no data available
 }
 else {
 //error
 }
}

while (size > 0) {

 else {
 buffer += x;
 size -= x;
 }
 }

What if we just wrap this up in a while loop?

Andrew Hilton / Duke ECE

Non-Blocking IO: Continued

53

int x = read (fd, buffer, size);
if (x < 0) {
 if (errno == EAGAIN){
 //no data available
 }
 else {
 //error
 }
}

while (size > 0) {

 else {
 buffer += x;
 size -= x;
 }
 }

What if we just wrap this up in a while loop?

Now we just made this blocking!
 We are just doing the blocking ourselves…

Andrew Hilton / Duke ECE

Busy Wait
• This approach is worse than blocking IO

• Why?

54

Andrew Hilton / Duke ECE

Busy Wait
• This approach is worse than blocking IO

• Why?

• Busy waiting

• Code is "actively" doing nothing

• Keeping CPU busy, consuming power, contending with other threads

• Blocking IO:

• At least OS will put thread to sleep while it waits

55

Andrew Hilton / Duke ECE

So What Do We Do?
• Need to do something else while we wait

• Like what?

56

Andrew Hilton / Duke ECE

So What Do We Do?
• Need to do something else while we wait

• Like what?

• It depends….

• On what?

57

Andrew Hilton / Duke ECE

So What Do We Do?
• Need to do something else while we wait

• Like what?

• It depends….

• On what?

• On what our server does

• On what the demands on it are

• On the model of parallelism we are using

• Who can name some models of parallelism? [AoP Ch 28 review]

58

Andrew Hilton / Duke ECE

Pipeline Parallelism

• When would this be appropriate?

• What do our IO threads do for "something else"?

59

Read
Input

Write
Output

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Write
Output

Andrew Hilton / Duke ECE

Pipeline Parallelism
• When appropriate: Can keep IO thread(s) busy

• Heavy IO to perform

• Might have one thread do reads and writes

• What is "something else"?

• Other IO requests

• Do whichever one is ready to be done

60

Andrew Hilton / Duke ECE

Pipeline Parallelism
• When appropriate: Can keep IO thread(s) busy

• Heavy IO to perform

• Might have one thread do reads and writes

• What is "something else"?

• Other IO requests

• Do whichever one is ready to be done

• Making hundreds of read/write calls to see which succeeds = inefficient

• Use poll or select

61

Andrew Hilton / Duke ECE

Pipeline Parallelism

• What can you say about data movement in this model?

• What can you say about load balance?

62

Read
Input

Write
Output

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Write
Output

Andrew Hilton / Duke ECE

Another Option
• Could have one thread work on many requests

while(1) {

 Accept new requests

 Do any available reads/writes

 Do any available compute

}

63

• What can you say about data movement in this model?

• What can you say about load balance?

Andrew Hilton / Duke ECE

A Slight Variant
• Slightly different inner loop:

while(1) {

 Accept new requests

 For each request with anything to do

 Do any available IO for that request

 Do any compute for that request

}

64

• What can you say about data movement in this model?

• What can you say about load balance?

