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Intro To Scalability

• What does scalability mean? 

• How does performance change with resources?
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Intro To Scalability

• What does scalability mean? 

• How does performance change with resources? 

• How does performance change with load?
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Scalability Terms
• Scale Out: Add more nodes 

• More computers 

• Scale Up: Add more stuff in each node 

• More processors in one node 

• Strong Scaling: How does time change for fixed problem size? 

• Do 100M requests, add more cores -> speedup? 

• Weak Scaling: How does time change for fixed (problem size/core)? 

• Do (100*N)M requests, with N cores -> speedup?
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Amdahl's Law
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Speedup (N) =  S + P

S + P
N
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Parallel Portion: P = 4
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Amdahl's Law

• 10/8 = 1.25x speedup = 25% increase in throughput. 
• 8/10 = 0.8x  = 20% reduction in latency
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Speedup (N) =  S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
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Speedup 2x
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Amdahl's Law
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Speedup (N) =  S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
6 + 4

6 + 4
4

Speedup 4x

=
10

7

• 10/7 = 1.42x speedup = 42% increase in throughput. 
• 7/10 = 0.7x  = 30% reduction in latency
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Amdahl's Law
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Speedup (N) =  S + P

S + P
N

Serial Portion: S = 6

Parallel Portion: P = 4

=
6 + 4

6 + 4

∞

Speedup ∞x

=
10
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• 10/6 = 1.67x speedup = 67% increase in throughput. 
• 6/10 = 0.6x  = 40% reduction in latency
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Amdahl's Law

• Anne Bracy: "Don't try to speed up brushing your teeth" 

• What does she mean?
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Why Not Perfect Scalability?

• Why don't we get (Nx) speedup with N cores? 

• What prevents ideal speedups?
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Impediments to Scalability

14

• Shared Hardware 

• Functional Units 

• Caches 

• Memory Bandwidth 

• IO Bandwidth 

• … 

• Data Movement 

• From one core to another 

• Blocking 

• Locks (and other synchronization) 

• Blocking IO
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Impediments to Scalability
• Shared Hardware 

• Functional Units 

• Caches 

• Memory Bandwidth 

• IO Bandwidth 

• … 

• Data Movement 

• From one core to another 

• Blocking 

• Blocking IO 

• Locks (and other synchronization)
15

Let's talk about these for now



Andrew Hilton / Duke ECE 

Hypothetical System
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Core A core has 2 threads (2-way SMT) 
   - Also private L1 + L2 caches (not shown)
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Hypothetical System

17

4 cores share an LLC  
 - Connected by on chip interconnectCore Core Core Core

LLC
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Hypothetical System
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We have a 2 socket node 
  - Has 2 chips 
  - DRAM 
  - Also some IO devices (not shown)

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM
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Hypothetical System
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We have 2 nodes
Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM
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Hypothetical System

20

Suppose we have 
2 requests: where 
best to run them?

Core Core Core Core

LLC

Core Core Core Core
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Hypothetical System
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Different threads 
on same core?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core
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Hypothetical System
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Different cores 
on same chip?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM
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Hypothetical System
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Different chips on 
same node?

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM
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Hypothetical System

24

Different nodes?
Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM
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How To Control Placement?
• Within a node: sched_setaffinity 

• Set mask of CPUs that a thread can run on 

• SMT contexts have different CPU identifiers 

• In pthreads, library wrapper: pthread_setaffinity_np 

• Across nodes: depends.. 

• Daemons running on each node?  Direct requests to them 

• Startup/end new services?  Software management 

• Load balancing becomes important here

25
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Tradeoff: Contention vs Locality

• Trade off:  

• Contend for shared resources? 

• Longer/slower communication?

26

Increasing Contention
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Tradeoff: Contention vs Locality
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Increasing Communication Latency
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Loads + Stores 
Same Cache 
1s of cycles

Loads + Stores 
On Chip Coherence 
10s of cycles

Loads + Stores 
Off Chip Coherence 
100s cycles

IO Operations 
Network 
Ks-Ms of cycles
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NUMA

28

Core Core Core Core

LLC

Core Core Core Core

LLC

DRAM DRAM

• Non Uniform Memory Access (NUMA—technically, ccNUMA)  

• Memory latency differs depending on physical address 

• migrate_pages, mbind: control physical memory placement
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Tradeoff: Contention vs Locality
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Increasing Contention
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Re-examine Our Hypothetical System
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Core Core Core Core
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Tradeoff: Contention vs Locality
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- External network b/w 
- Datacenter cooling

- Memory b/w 
- Chip<-> chip b/w 
- IO b/w- On chip b/w 

- LLC capacity 
- On chip cooling- L1/L2 capacity 

- Functional Units
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Interactions Between Resource Contention
• Suppose two threads need + are sensitive to: 

• LLC Capacity 

• Memory bandwidth 

• What happens when we run them together?
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Interactions Between Resource Contention
• Suppose two threads need + are sensitive to: 

• LLC Capacity 

• Memory bandwidth 

• What happens when we run them together? 

• Contention for LLC -> more cache misses 

• Slows down program, but also…
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Interactions Between Resource Contention
• Suppose two threads need + are sensitive to: 

• LLC Capacity 

• Memory bandwidth 

• What happens when we run them together? 

• Contention for LLC -> more cache misses 

• Slows down program, but also… 

• Increases memory bandwidth demands 

• Which we already need and are contending for :(
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Interactions Between Resource Contention
• Suppose two threads need + are sensitive to: 

• LLC Capacity 

• Memory bandwidth 

• What happens when we run them together? 

• Contention for LLC -> more cache misses 

• Slows down program, but also… 

• Increases memory bandwidth demands 

• Which we already need and are contending for :( 

• Interactions can make contention even worse! 

• Is there a flip side?
35
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Improved Utilization
• Can improve utilization of resources 

• One thread executes while another stalls 

• One thread uses FUs that the other does not need 

• Pair large cache footprint with small cache footprint 

• Shared code/data: one copy in cache

36
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Performance/Scalability 1
• So how do we improve things?
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Performance/Scalability 1
• So how do we improve things? 

• Profile our system!  Understand what is slow and why 

• Remember: Ahmdal's law!

38
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Intro To Scalability
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Intro To Scalability
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Breaking it down shows WHERE to focus our optimization efforts

Receive Data
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Query
Produce Output
Send Results
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Performance/Scalability 1
• So how do we improve things? 

• Profile our system!  Understand what is slow and why 

• Remember: Ahmdal's law!  

• After making a change, what do we do?

41
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Performance/Scalability 1
• So how do we improve things? 

• Profile our system!  Understand what is slow and why 

• Remember: Ahmdal's law!  

• After making a change, what do we do? 

• Measure impact: did we make things better?  How much?

42
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Performance/Scalability 1
• So what can we do? 

• Optimize code to improve its performance 

• Transform code to improve resource usage (e.g. cache space) 

• Pair threads with complementary resource usage
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Performance/Scalability 1
• So what can we do? 

• Optimize code to improve its performance 

• Transform code to improve resource usage (e.g. cache space) 

• Pair threads with complementary resource usage 

• Sounds complicated? 

• Learn more about hardware (e.g., ECE 552) 

• Take Performance/Optimization/Parallelism 

44
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Impediments to Scalability
• Shared Hardware 

• Functional Units 

• Caches 

• Memory Bandwidth 

• IO Bandwidth 

• … 

• Data Movement 

• From one core to another 

• Blocking 

• Blocking IO 

• Locks (and other synchronization)
45

Let's talk about this next
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Never Block
• Critical principle: never block 

• Why not?
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Never Block
• Critical principle: never block 

• Why not? 

• Can't we just throw more threads at it? 

• One thread per request (or even a few per request) 

• Just block whenever you want
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Never Block
• Critical principle: never block 

• Why not? 

• Can't we just throw more threads at it? 

• One thread per request (or even a few per request) 

• Just block whenever you want 

• Nice in theory, but has overheads 

• Context switching takes time 

• Switching threads reduces temporal locality 

• Threads not blocked?  May thrash if too many 

• Threads use resources
48
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Non-Blocking IO
• IO operations often block (we never want to block) 

• Can use non-blocking IO
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Non-Blocking IO
• IO operations often block (we never want to block) 

• Can use non-blocking IO 

• Set FD to non-blocking using fcntl: 
int x = fcntl(fd, F_GETFL, 0); 

x |= O_NONBLOCK; 

fcntl(fd, F_SETFL, x); 

• Now reads/writes/etc won't block 

• Just return immediately if can't perform IO immediately 

• Note: not magic 

• ONLY means that IO operation returns without waiting

50
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Non-Blocking IO: Continued

51

int x = read (fd, buffer, size); 
if (x < 0) { 
   if (errno == EAGAIN){  
      //no data available 
   } 
   else { 
      //error 
   } 
}
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Non-Blocking IO: Continued

52

int x = read (fd, buffer, size); 
if (x < 0) { 
   if (errno == EAGAIN){  
      //no data available 
   } 
   else { 
      //error 
   } 
}

while (size > 0) {

       else { 
         buffer += x; 
         size -= x; 
       } 
   }

What if we just wrap this up in a while loop?
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Non-Blocking IO: Continued
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int x = read (fd, buffer, size); 
if (x < 0) { 
   if (errno == EAGAIN){  
      //no data available 
   } 
   else { 
      //error 
   } 
}

while (size > 0) {

       else { 
         buffer += x; 
         size -= x; 
       } 
   }

What if we just wrap this up in a while loop?

Now we just made this blocking! 
  We are just doing the blocking ourselves…
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Busy Wait
• This approach is worse than blocking IO 

• Why?
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Busy Wait
• This approach is worse than blocking IO 

• Why? 

• Busy waiting 

• Code is "actively" doing nothing 

• Keeping CPU busy, consuming power, contending with other threads 

• Blocking IO: 

• At least OS will put thread to sleep while it waits

55
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So What Do We Do?
• Need to do something else while we wait 

• Like what?
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So What Do We Do?
• Need to do something else while we wait 

• Like what? 

• It depends…. 

• On what?
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So What Do We Do?
• Need to do something else while we wait 

• Like what? 

• It depends…. 

• On what? 

• On what our server does 

• On what the demands on it are 

• On the model of parallelism we are using 

• Who can name some models of parallelism?  [AoP Ch 28 review]

58
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Pipeline Parallelism

• When would this be appropriate? 

• What do our IO threads do for "something else"?

59
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Pipeline Parallelism
• When appropriate: Can keep IO thread(s) busy 

• Heavy IO to perform 

• Might have one thread do reads and writes 

• What is "something else"? 

• Other IO requests 

• Do whichever one is ready to be done

60
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Pipeline Parallelism
• When appropriate: Can keep IO thread(s) busy 

• Heavy IO to perform 

• Might have one thread do reads and writes 

• What is "something else"? 

• Other IO requests 

• Do whichever one is ready to be done 

• Making hundreds of read/write calls to see which succeeds = inefficient 

• Use poll or select

61
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Pipeline Parallelism

• What can you say about data movement in this model? 

• What can you say about load balance?
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Another Option
• Could have one thread work on many requests 

while(1) { 

  Accept new requests 

  Do any available reads/writes 

  Do any available compute 

} 

63

• What can you say about data movement in this model? 

• What can you say about load balance?
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A Slight Variant
• Slightly different inner loop: 

while(1) { 

  Accept new requests 

  For each request with anything to do 

        Do any available IO for that request 

        Do any compute for that request 

} 

64

• What can you say about data movement in this model? 

• What can you say about load balance?


