Engineering Robust Server

Software
Scalability

IIIIIIIIII



Intro To Scalability

e What does scalability mean?

IIIIIIIIII

Andrew Hilton / Duke ECE 2



Intro To Scalability

e What does scalability mean?

Low scale-ability High scale-ability
Duke

UNIVERSITY Andrew Hilton / Duke ECE 3



Intro To Scalability

100 &
® Design 1 ® Design 2
S 75
D
(Vg
=
L>)~ 50 >
C X
N >
S 6
1 25 B =
E)
) D
0 . . . .
1 2 4 8 16

- Compute Resources
e What does scalability mean?

e How does performance change with resources?

uuuuuuuuuu Andrew Hilton / Duke ECE 4



Intro To Scalability

200
® Design 1 ® Design 2
S 150
QL -
(Vg 2
=
> 100 -
C 5
Q ) o
+J = g
S 50 (— -
0 . . .
0 10 100 1K

Competing Requests
e What does scalability mean?

e How does performance change with resources?

e How does performance change with load?

IIIIIIIIII

10K

Andrew Hilton / Duke ECE 5



Scalability Terms

e Scale Out: Add more nodes

e More computers

e Scale Up: Add more stuff in each node

e More processors in one node

e Strong Scaling: How does time change for fixed problem size?

e Do 100M requests, add more cores -> speedup?

e Weak Scaling: How does time change for fixed (problem size/core)?

e Do (100*N)M requests, with N cores -> speedup?

uuuuuuuuuu Andrew Hilton / Duke ECE 6



Amdahl's Law

S+P

»
+_
> N

Speedup (N) =

UNIVERSITY Andrew Hilton / Duke ECE 7



Amdahl's Law

Speedup (N) = S+E - 6+j
S+W 6+W

Serial Portion: S =6

Parallel Portion: P = 4

nnnnnnnnnn Andrew Hilton / Duke ECE 8



Amdahl's Law

S+P 6 + 4 10
S+% 6+ 8

Speedup (N) =

Serial Portion: S =6

Speedup 2x

e B B B B B e B

Parallel Portion: P = 4
e 10/8 = 1.25x speedup = 25% increase in throughput.
e 8/10 = 0.8x = 20% reduction in latency

uuuuuuuuuu Andrew Hilton / Duke ECE 9



Amdahl's Law

Speedup (N) = = =

Serial Portion: S =6

Speedup 4x

Parallel Portion: P = 4
e 10/7 =1.42x speedup = 42% increase in throughput.
e //10=0.7x = 30% reduction in latency

uuuuuuuuuu Andrew Hilton / Duke ECE 10



Amdahl's Law

Speedup (N) = = =

Serial Portion: S =6

Speedup «~Xx

Parallel Portion: P = 4

e 10/6 = 1.67x speedup = 67/% increase in throughput.
e 6/10 =0.6x = 40% reduction in latency

uuuuuuuuuu Andrew Hilton / Duke ECE 11



Amdahl's Law

70

)
y @ P=40% @ P=20% ® P=10%
é 52.5 :
S )
O 2
23 35
E @)
= )
o = = a 8 >
= 17.5 =
@
al _ _ = 0 )
0 @ i . . . .
1 2 4 8 16 Infinity

Speedup of Parallel Portion

e Anne Bracy: "Don't try to speed up brushing your teeth”

¢ \What does she mean?

IIIIIIIIII

Andrew Hilton / Duke ECE 12



Why Not Perfect Scalability?

100 &
® Design 1 ® Design 2
S 75
D
(Vg
=
L>)~ 50 >
C 5
N >
S 8
1 25 B =
E)
) D
0 . . . .
1 2 4 8 16

Compute Resources

e Why don't we get (Nx) speedup with N cores?

e What prevents ideal speedups?

IIIIIIIIII Andrew Hilton / Duke ECE 13



Impediments to Scalability

e Shared Hardware

e Functional Units
e Caches

e Memory Bandwidth
e |O Bandwidth

O
e Data Movement

e From one core to another

e Blocking

e Locks (and other synchronization)

Duke e Blocking 1O

IIIIIIIIII

Andrew Hilton / Duke ECE 14



IIIIIIIIII

Shared Hardware

Functional Units

Caches

Memory Bandwidth

|O Bandwidth

Data Movement

e From one core to another

Blocking
e Blocking IO

e Locks (and other synchronization)

to Scalability

Let's talk about these for now

Andrew Hilton / Duke ECE 15



Hypothetical System

Core A core has 2 threads (2-way SMT)
22 - Also private L1 + L2 caches (not shown)

uuuuuuuuuu Andrew Hilton / Duke ECE 16



Hypothetical System

L 4 cores share an LLC
| | | | - Connected by on chip interconnect

Core || Core || Core !l Core

dd [ddlddde

|||||||||| Andrew Hilton / Duke ECE 17



Hypothetical System

DRAM DRAM
: :
LLC LLC

Core || Core | Core| Core| ®» (Core| Corel Corel Core

dd [dddddd ) [ddddldd e

We have a 2 socket node
- Has 2 chips
- DRAM

- Also some 10 devices (not shown)

IIIIIIIIII



Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

VA VIR VA P 22122122122 We have 2 nodes

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

dd [dddddd ) [ddddldd e

IIIIIIIIII



Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

001001001001 1100100 1001100 | 2veauests where

t best to run them?
DR?M DR@M
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

dd [dddddd ) [ddddldd e

IIIIIIIIII



Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core | |Core| ® (Core ! Core||Core | Core

001001001 1102100120102 onsamecorer

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

dd [dddddd ) [ddddldd e

IIIIIIIIII



Hypothetical System

DRAM

!

DRAM

!

LLC

Core

0 ¢

Core

@r}e@e

0¢

LLC

Core

0¢

Core

0 ¢

Core

0¢

Core

0¢

DRAM

DRAM

!

LLC

!

Core

0 ¢

Core

0¢

Core

0 ¢

Core

0¢

LLC

Core

0¢

Core

0¢

Core

0 ¢

Core

0¢

IIIIIIIIII

Different cores
on same chip?



Hypothetical System

DRAM

!

DRAM

LLC

Core

0 ¢

Core

0 ¢

Core

@r)e

0¢

!

LLC

Core

0 ¢

Core

0¢

Core

Q@G

0¢

!

DRAM

DRAM

!

LLC

Core

0¢

Core

0 ¢

Core

0 ¢

Core

0¢

!

LLC

Core

0¢

Core

0¢

Core

0 ¢

Core

0¢

IIIIIIIIII

Different chips on
same node?



Hypothetical System

DR$M DR@M
LLC LLC
Core| Core| Core| ® (Core | |Core||Core | Core

0 ¢

0 ¢

0¢

0¢

0 ¢

0¢

0¢

DRAM

DRAM

!

LLC

!

Core

0 ¢

Core

0 ¢

Core

0¢

LLC

Core

0¢

Core

0¢

Core

0 ¢

Core

0¢

Different nodes?



How To Control Placement?

P

e Within a node: sched setaffinity

e Set mask of CPUs that a thread can run on

e SMT contexts have different CPU identitiers

e In pthreads, library wrapper: pthread_setaffinity_np
e Across nodes: depends..

e Daemons running on each node? Direct requests to them
o Startup/end new services? Software management

e Load balancing becomes important here

|||||||||| Andrew Hilton / Duke ECE 25



IIIIIIIIII

Tradeoff: Contention vs Locality

Increasing Communication Latency
.

Same Node

Same Core
Same Chip
Different Node

e ——
Increasing Contention

Trade off:

e Contend for shared resources?

e Longer/slower communication?

Andrew Hilton / Duke ECE 26



Tradeoff: Contention vs Locality

Increasing Communication Latency

S ——————

Same Core

Loads + Stores
Same Cache
1s of cycles

IIIIIIIIII

o
O @ O
= O
5 2 =
v v O
- Nl
; ; g
=
Loads + Stores Loads + Stores |O Operations
On Chip Coherence Off Chip Coherence Network
10s of cycles 100s cycles Ks-Ms of cycles

Andrew Hilton / Duke ECE 27



NUMA

DRAM DRAM

y -

LLC

Y7 —
{ Core| Core| Core| ® (Core | Core| Core||Core

dd[dddd} [ddldddd|de

e Non Uniform Memory Access (NUMA—technically, ccNUMA)

e Memory latency differs depending on physical address

e migrate_pages, mbind: control physical memory placement

nnnnnnnnnn Andrew Hilton / Duke ECE 28



Tradeoff: Contention vs Locality

Same Node

Same Core
Same Chip
Different Node

—
Duke Increasing Contention

|||||||||| Andrew Hilton / Duke ECE 29



Re-examine Our Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

dd [dddddd N [dd[ddldd 4

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

dd [dddddd ) [ddddldd e

IIIIIIIIII



Tradeoff: Contention vs Locality

- External network b/w
- Datacenter cooling

- Memory b/w

- Chip<-> chip b/w
- On chip b/w - 10 b/w

- LLC capacity
- L1/L2 capacity - On chip cooling
- Functional Units

Same Core
Same Chip
Same Node

Different Node

—
Duke Increasing Contention

UUUUUUUUUU Andrew Hilton / Duke ECE 31



Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

|||||||||| Andrew Hilton / Duke ECE 32



Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

e Contention for LLC -> more cache misses

e Slows down program, but also...

|||||||||| Andrew Hilton / Duke ECE 33



Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

e Contention for LLC -> more cache misses
e Slows down program, but also...
e Increases memory bandwidth demands

e Which we already need and are contending for :(

|||||||||| Andrew Hilton / Duke ECE 34



Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

e Contention for LLC -> more cache misses
e Slows down program, but also...
e Increases memory bandwidth demands

e Which we already need and are contending for :(

e Interactions can make contention even worsel!

e Isthere atlip side?

|||||||||| Andrew Hilton / Duke ECE 35



IIIIIIIIII

Improved Utilization

Can improve utilization of resources
e One thread executes while another stalls
e One thread uses FUs that the other does not need
e Pair large cache footprint with small cache footprint

e Shared code/data: one copy in cache

Andrew Hilton / Duke ECE 36



Performance/Scalability 1

e So how do we improve things?

IIIIIIIIII

Andrew Hilton / Duke ECE 37



Performance/Scalability 1

e So how do we improve things?

e Profile our system! Understand what is slow and why

¢ Remember: Ahmdal's law!

IIIIIIIIII

Andrew Hilton / Duke ECE 38



Intro To Scalability

200 3
® Current Design
S 150
Q =
i -
=
> 100 -
C
Q
) =
S 50 -
(
0 . . . .
0 10 100 1K 10K

Competing Requests

This graph hides a lot of important detail

IIIIIIIIII

Andrew Hilton / Duke ECE 39



Intro To Scalability

N
@b
(@)

W Send Results ® Current Design

— 150 B Produce Output
" Query
B Authenticate

Latency (usec

100

Competing Requests

K

Breaking it down shows WHERE to focus our optimization efforts

uuuuuuuuuu Andrew Hilton / Duke ECE 40



Performance/Scalability 1

e So how do we improve things?

e Profile our system! Understand what is slow and why

¢ Remember: Ahmdal's law!

e After making a change, what do we do?

IIIIIIIIII

Andrew Hilton / Duke ECE 41



Performance/Scalability 1

e So how do we improve things?

e Profile our system! Understand what is slow and why

¢ Remember: Ahmdal's law!

e After making a change, what do we do?

e Measure impact: did we make things better? How much?

IIIIIIIIII

Andrew Hilton / Duke ECE 42



IIIIIIIIII

Performance/Scalability 1

So what can we do?
e Optimize code to improve its performance
e Transform code to improve resource usage (e.g. cache space)

e Pair threads with complementary resource usage

Andrew Hilton / Duke ECE 43



Performance/Scalability 1

e So what can we do?
e Optimize code to improve its performance
e Transform code to improve resource usage (e.g. cache space)
e Pair threads with complementary resource usage

e Sounds complicated?

e Learn more about hardware (e.qg., ECE 552)

o Take Performance/Optimization/Parallelism

IIIIIIIIII

Andrew Hilton / Duke ECE 44



Impediments to Scalability

e Shared Hardware

e Functional Units
e Caches

e Memory Bandwidth
e |O Bandwidth

e Data Movement

e From one core to another

B\ocking Let's talk about this next
e Blocking IO

Duke e Locks (and other synchronization)

IIIIIIIIII

Andrew Hilton / Duke ECE 45



Never Block

e Critical principle: never block
e Why not?

IIIIIIIIII

Andrew Hilton / Duke ECE 46



Never Block

e Critical principle: never block
e Why not?
e Can't we just throw more threads at it?

e One thread per request (or even a few per request)

e Just block whenever you want

IIIIIIIIII

Andrew Hilton / Duke ECE 4/



Never Block

e Critical principle: never block
e Why not?
e Can't we just throw more threads at it?

e One thread per request (or even a few per request)

e Just block whenever you want

e Nice in theory, but has overheads
e Context switching takes time
e Switching threads reduces temporal locality
e Threads not blocked? May thrash it too many

e | hreads use resources

IIIIIIIIII

Andrew Hilton / Duke ECE 48



Non-Blocking 1O

e |O operations often block (we never want to block)

e Can use non-blocking |O

IIIIIIIIII

Andrew Hilton / Duke ECE 49



Non-Blocking 1O

e |O operations often block (we never want to block)

e Can use non-blocking |O

e Set FD to non-blocking using fentl:

int x = fcntl(fd, F GETFL, 0);
x |= O NONBLOCK;
fecntl (£ftd, F SETFL, x);

e Now reads/writes/etc won't block

e Just return immediately it can't perform 1O immediately
e Note: not magic

e ONLY means that IO operation returns without waiting

|||||||||| Andrew Hilton / Duke ECE 50



Non-Blocking 10: Continued

int x = read (fd, buffer, size);
1f (x < 0) {
1f (errno == EAGAIN) {

//no data available

J

else {
//error

J

|||||||||| Andrew Hilton / Duke ECE 51



Non-Blocking 10: Continued

while (size > 0) {

int x = read (fd, buffer, size);
1f (x < 0) {
1f (errno == EAGAIN) {

//no data available

J

else {
//error

J
J

else {
buffer += x;
size —-= X;

What if we just wrap this up in a while loop?

IIIIIIIIII

Andrew Hilton / Duke ECE 52



IIIIIIIIII

Non-Blocking 10: Continued

while (size > 0) {

int x = read (fd, buffer, size);
1f (x < 0) {
1f (errno == EAGAIN) {

//no data available

J

else {
//error
}
élse {
buffer += x: What if we just wrap this up in a while loop?
size -= Xx; Now we just made this blocking!
} We are just doing the blocking ourselves...

Andrew Hilton / Duke ECE 53



Busy Wait

e This approach is worse than blocking 1O

IIIIIIIIII

Andrew Hilton / Duke ECE 54



Busy Wait

e This approach is worse than blocking 1O

e Busy walting
e Code is "actively" doing nothing
e Keeping CPU busy, consuming power, contending with other threads

e Blocking IO:
o Atleast OS will put thread to sleep while it waits

|||||||||| Andrew Hilton / Duke ECE 35



So What Do We Do?

e Need to do something else while we wait

o Like what?

IIIIIIIIII

Andrew Hilton / Duke ECE 56



So What Do We Do?

e Need to do something else while we wait

o Like what?
e [tdepenas....

e On what?

IIIIIIIIII

Andrew Hilton / Duke ECE 37



So What Do We Do?

e Need to do something else while we wait
e Like what?

e [tdepenas....
e On what?

e On what our server does

¢ On what the demands on it are

e On the model of parallelism we are using

e Who can name some models of parallelism? [AoP Ch 28 review]

|||||||||| Andrew Hilton / Duke ECE 58



Pipeline Parallelism

Compute
Compute < \
Compute \ Write
Output
Read Compute >
Input Compute <
Compute - Write
Output
Compute <: Compute 7;
Compute

e When would this be appropriate?

e What do our IO threads do for "something else"?

uuuuuuuu Andrew Hilton / Duke ECE 59



Pipeline Parallelism

e When appropriate: Can keep 10 thread(s) busy
e Heavy IO to perform

e Might have one thread do reads and writes

e Whatis "something else"?

e Other |O requests

e Do whichever one is ready to be done

IIIIIIIIII

Andrew Hilton / Duke ECE 60



Pipeline Parallelism

e When appropriate: Can keep 10 thread(s) busy
e Heavy IO to perform
e Might have one thread do reads and writes

e Whatis "something else"?

e Other |O requests
e Do whichever one is ready to be done
e Making hundreds of read/write calls to see which succeeds = inefficient

e Usepoll orselect

|||||||||| Andrew Hilton / Duke ECE 61



Pipeline Parallelism

Compute

Compute

< Compute k Write
Output
Read Compute >
Input Compute <
EEE—

Compute

Write
Output

Compute

Compute

Compute

e What can you say about data movement in this model?

e What can you say about load balance?

uuuuuuuu Andrew Hilton / Duke ECE 62



Another Option

e Could have one thread work on many requests
while(1) {
Accept new requests
Do any available reads/writes

Do any available compute

J

e What can you say about data movement in this model?

e What can you say about load balance?

IIIIIIIIII

Andrew Hilton / Duke ECE 63



A Slight Variant

e Slightly different inner loop:
while(1) {
Accept new requests
For each request with anything to do
Do any available 1O for that request

Do any compute for that request

J

e What can you say about data movement in this model?

e What can you say about load balance?

IIIIIIIIII

Andrew Hilton / Duke ECE 64



