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Intro To Scalability

e What does scalability mean?
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Intro To Scalability

e What does scalability mean?

Low scale-ability High scale-ability
Duke
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Intro To Scalability
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- Compute Resources
e What does scalability mean?

e How does performance change with resources?
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Intro To Scalability
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Competing Requests
e What does scalability mean?

e How does performance change with resources?

e How does performance change with load?
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Scalability Terms

e Scale Out: Add more nodes

e More computers

e Scale Up: Add more stuff in each node

e More processors in one node

e Strong Scaling: How does time change for fixed problem size?

e Do 100M requests, add more cores -> speedup?

e Weak Scaling: How does time change for fixed (problem size/core)?

e Do (100*N)M requests, with N cores -> speedup?
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Amdahl's Law
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Amdahl's Law

Speedup (N) = S+E - 6+j
S+W 6+W

Serial Portion: S =6

Parallel Portion: P = 4
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Amdahl's Law

S+P 6 + 4 10
S+% 6+ 8

Speedup (N) =

Serial Portion: S =6

Speedup 2x

e B B B B B e B

Parallel Portion: P = 4
e 10/8 = 1.25x speedup = 25% increase in throughput.
e 8/10 = 0.8x = 20% reduction in latency
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Amdahl's Law

Speedup (N) = = =

Serial Portion: S =6

Speedup 4x

Parallel Portion: P = 4
e 10/7 =1.42x speedup = 42% increase in throughput.
e //10=0.7x = 30% reduction in latency
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Amdahl's Law

Speedup (N) = = =

Serial Portion: S =6

Speedup «~Xx

Parallel Portion: P = 4

e 10/6 = 1.67x speedup = 67/% increase in throughput.
e 6/10 =0.6x = 40% reduction in latency
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Amdahl's Law
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Speedup of Parallel Portion

e Anne Bracy: "Don't try to speed up brushing your teeth”

¢ \What does she mean?
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Why Not Perfect Scalability?
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Compute Resources

e Why don't we get (Nx) speedup with N cores?

e What prevents ideal speedups?
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Impediments to Scalability

e Shared Hardware

e Functional Units
e Caches

e Memory Bandwidth
e |O Bandwidth

O
e Data Movement

e From one core to another

e Blocking

e Locks (and other synchronization)

Duke e Blocking 1O
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Shared Hardware

Functional Units

Caches

Memory Bandwidth

|O Bandwidth

Data Movement

e From one core to another

Blocking
e Blocking IO

e Locks (and other synchronization)

to Scalability

Let's talk about these for now
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Hypothetical System

Core A core has 2 threads (2-way SMT)
22 - Also private L1 + L2 caches (not shown)
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Hypothetical System

L 4 cores share an LLC
| | | | - Connected by on chip interconnect

Core || Core || Core !l Core

dd [ddlddde
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Hypothetical System

DRAM DRAM
: :
LLC LLC

Core || Core | Core| Core| ®» (Core| Corel Corel Core

dd [dddddd ) [ddddldd e

We have a 2 socket node
- Has 2 chips
- DRAM

- Also some 10 devices (not shown)
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Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

VA VIR VA P 22122122122 We have 2 nodes

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

dd [dddddd ) [ddddldd e
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Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core

001001001001 1100100 1001100 | 2veauests where

t best to run them?
DR?M DR@M
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core
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Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core | |Core| ® (Core ! Core||Core | Core

001001001 1102100120102 onsamecorer

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core
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Hypothetical System
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Hypothetical System
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Hypothetical System

DR$M DR@M
LLC LLC
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How To Control Placement?

P

e Within a node: sched setaffinity

e Set mask of CPUs that a thread can run on

e SMT contexts have different CPU identitiers

e In pthreads, library wrapper: pthread_setaffinity_np
e Across nodes: depends..

e Daemons running on each node? Direct requests to them
o Startup/end new services? Software management

e Load balancing becomes important here
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Tradeoff: Contention vs Locality

Increasing Communication Latency
.

Same Node

Same Core
Same Chip
Different Node

e ——
Increasing Contention

Trade off:

e Contend for shared resources?

e Longer/slower communication?
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Tradeoff: Contention vs Locality

Increasing Communication Latency

S ——————

Same Core

Loads + Stores
Same Cache
1s of cycles

IIIIIIIIII
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Loads + Stores Loads + Stores |O Operations
On Chip Coherence Off Chip Coherence Network
10s of cycles 100s cycles Ks-Ms of cycles
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NUMA

DRAM DRAM

y -

LLC

Y7 —
{ Core| Core| Core| ® (Core | Core| Core||Core

dd[dddd} [ddldddd|de

e Non Uniform Memory Access (NUMA—technically, ccNUMA)

e Memory latency differs depending on physical address

e migrate_pages, mbind: control physical memory placement
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Tradeoff: Contention vs Locality

Same Node

Same Core
Same Chip
Different Node

—
Duke Increasing Contention
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Re-examine Our Hypothetical System

DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core
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DRAM DRAM
! !
LLC LLC

Core| Core ! Core||Core| ®» (Core | |Core||Core| Core
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Tradeoff: Contention vs Locality

- External network b/w
- Datacenter cooling

- Memory b/w

- Chip<-> chip b/w
- On chip b/w - 10 b/w

- LLC capacity
- L1/L2 capacity - On chip cooling
- Functional Units

Same Core
Same Chip
Same Node

Different Node

—
Duke Increasing Contention
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Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?
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Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

e Contention for LLC -> more cache misses

e Slows down program, but also...
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Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

e Contention for LLC -> more cache misses
e Slows down program, but also...
e Increases memory bandwidth demands

e Which we already need and are contending for :(
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Interactions Between Resource Contention

e Suppose two threads need + are sensitive to:
e LLC Capacity
e Memory bandwidth

e What happens when we run them together?

e Contention for LLC -> more cache misses
e Slows down program, but also...
e Increases memory bandwidth demands

e Which we already need and are contending for :(

e Interactions can make contention even worsel!

e Isthere atlip side?
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Improved Utilization

Can improve utilization of resources
e One thread executes while another stalls
e One thread uses FUs that the other does not need
e Pair large cache footprint with small cache footprint

e Shared code/data: one copy in cache
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Performance/Scalability 1

e So how do we improve things?

IIIIIIIIII

Andrew Hilton / Duke ECE 37



Performance/Scalability 1

e So how do we improve things?

e Profile our system! Understand what is slow and why

¢ Remember: Ahmdal's law!

IIIIIIIIII
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Intro To Scalability
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Competing Requests

This graph hides a lot of important detail
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Intro To Scalability
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Breaking it down shows WHERE to focus our optimization efforts
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Performance/Scalability 1

e So how do we improve things?

e Profile our system! Understand what is slow and why

¢ Remember: Ahmdal's law!

e After making a change, what do we do?

IIIIIIIIII
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Performance/Scalability 1

e So how do we improve things?

e Profile our system! Understand what is slow and why

¢ Remember: Ahmdal's law!

e After making a change, what do we do?

e Measure impact: did we make things better? How much?

IIIIIIIIII
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Performance/Scalability 1

So what can we do?
e Optimize code to improve its performance
e Transform code to improve resource usage (e.g. cache space)

e Pair threads with complementary resource usage
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Performance/Scalability 1

e So what can we do?
e Optimize code to improve its performance
e Transform code to improve resource usage (e.g. cache space)
e Pair threads with complementary resource usage

e Sounds complicated?

e Learn more about hardware (e.qg., ECE 552)

o Take Performance/Optimization/Parallelism

IIIIIIIIII
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Impediments to Scalability

e Shared Hardware

e Functional Units
e Caches

e Memory Bandwidth
e |O Bandwidth

e Data Movement

e From one core to another

B\ocking Let's talk about this next
e Blocking IO

Duke e Locks (and other synchronization)
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Never Block

e Critical principle: never block
e Why not?
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Never Block

e Critical principle: never block
e Why not?
e Can't we just throw more threads at it?

e One thread per request (or even a few per request)

e Just block whenever you want

IIIIIIIIII
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Never Block

e Critical principle: never block
e Why not?
e Can't we just throw more threads at it?

e One thread per request (or even a few per request)

e Just block whenever you want

e Nice in theory, but has overheads
e Context switching takes time
e Switching threads reduces temporal locality
e Threads not blocked? May thrash it too many

e | hreads use resources

IIIIIIIIII
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Non-Blocking 1O

e |O operations often block (we never want to block)

e Can use non-blocking |O

IIIIIIIIII
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Non-Blocking 1O

e |O operations often block (we never want to block)

e Can use non-blocking |O

e Set FD to non-blocking using fentl:

int x = fcntl(fd, F GETFL, 0);
x |= O NONBLOCK;
fecntl (£ftd, F SETFL, x);

e Now reads/writes/etc won't block

e Just return immediately it can't perform 1O immediately
e Note: not magic

e ONLY means that IO operation returns without waiting
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Non-Blocking 10: Continued

int x = read (fd, buffer, size);
1f (x < 0) {
1f (errno == EAGAIN) {

//no data available

J

else {
//error

J
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Non-Blocking 10: Continued

while (size > 0) {

int x = read (fd, buffer, size);
1f (x < 0) {
1f (errno == EAGAIN) {

//no data available

J

else {
//error

J
J

else {
buffer += x;
size —-= X;

What if we just wrap this up in a while loop?

IIIIIIIIII
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Non-Blocking 10: Continued

while (size > 0) {

int x = read (fd, buffer, size);
1f (x < 0) {
1f (errno == EAGAIN) {

//no data available

J

else {
//error
}
élse {
buffer += x: What if we just wrap this up in a while loop?
size -= Xx; Now we just made this blocking!
} We are just doing the blocking ourselves...
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Busy Wait

e This approach is worse than blocking 1O

IIIIIIIIII
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Busy Wait

e This approach is worse than blocking 1O

e Busy walting
e Code is "actively" doing nothing
e Keeping CPU busy, consuming power, contending with other threads

e Blocking IO:
o Atleast OS will put thread to sleep while it waits
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So What Do We Do?

e Need to do something else while we wait

o Like what?
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So What Do We Do?

e Need to do something else while we wait

o Like what?
e [tdepenas....

e On what?
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So What Do We Do?

e Need to do something else while we wait
e Like what?

e [tdepenas....
e On what?

e On what our server does

¢ On what the demands on it are

e On the model of parallelism we are using

e Who can name some models of parallelism? [AoP Ch 28 review]
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Pipeline Parallelism

Compute
Compute < \
Compute \ Write
Output
Read Compute >
Input Compute <
Compute - Write
Output
Compute <: Compute 7;
Compute

e When would this be appropriate?

e What do our IO threads do for "something else"?
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Pipeline Parallelism

e When appropriate: Can keep 10 thread(s) busy
e Heavy IO to perform

e Might have one thread do reads and writes

e Whatis "something else"?

e Other |O requests

e Do whichever one is ready to be done

IIIIIIIIII
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Pipeline Parallelism

e When appropriate: Can keep 10 thread(s) busy
e Heavy IO to perform
e Might have one thread do reads and writes

e Whatis "something else"?

e Other |O requests
e Do whichever one is ready to be done
e Making hundreds of read/write calls to see which succeeds = inefficient

e Usepoll orselect
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Pipeline Parallelism

Compute

Compute

< Compute k Write
Output
Read Compute >
Input Compute <
EEE—

Compute

Write
Output

Compute

Compute

Compute

e What can you say about data movement in this model?

e What can you say about load balance?
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Another Option

e Could have one thread work on many requests
while(1) {
Accept new requests
Do any available reads/writes

Do any available compute

J

e What can you say about data movement in this model?

e What can you say about load balance?
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A Slight Variant

e Slightly different inner loop:
while(1) {
Accept new requests
For each request with anything to do
Do any available 1O for that request

Do any compute for that request

J

e What can you say about data movement in this model?

e What can you say about load balance?
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