Business Continuity: High Availability

Tyler Bletsch
Duke University

Includes material adapted from the course “Information Storage and Management v2” (modules 9-12), published by EMC corporation.
What is Business Continuity?

It is a process that prepares for, responds to, and recovers from a system outage that can adversely affects business operations.

- An integrated and enterprise-wide process that includes set of activities to ensure “information availability”
- BC involves proactive measures and reactive countermeasures
- In a virtualized environment, BC solutions need to protect both physical and virtualized resources
Information Availability

It is the ability of an IT infrastructure to function according to business expectations, during its specified time of operation.

- Information availability can be defined with the help of:
 - **Accessibility**
 - Information should be accessible to the right user when required
 - **Reliability**
 - Information should be reliable and correct in all aspects
 - **Timeliness**
 - Defines the time window during which information must be accessible
Causes of Information Unavailability

Disaster (<1% of Occurrences)*
- Natural or man made
 - Flood
 - Fire
 - Earthquake

Unplanned Outages (20%)
- Failure
 - Database corruption
 - Component (physical and/or virtual) failure
 - Human error

Planned Outages (80%)
- Competing workloads
 - Backup, reporting
 - Data warehouse extracts
 - Application and data restore
Impact of Downtime

Lost Productivity

- Number of employees impacted x hours out x hourly rate

Know the downtime costs (per hour, day, two days, and so on.)

Lost Revenue

- Direct loss
- Compensatory payments
- Lost future revenue
- Billing losses
- Investment losses

Damaged Reputation

- Customers
- Suppliers
- Financial markets
- Banks
- Business partners

Financial Performance

- Revenue recognition
- Cash flow
- Lost discounts (A/P)
- Payment guarantees
- Credit rating
- Stock price

Other Expenses

- Temporary employees, equipment rental, overtime costs, extra shipping costs, travel expenses, and so on.
Measuring Information Availability

- **MTBF**: Average time available for a system or component to perform its normal operations between failures
 \[MTBF = \frac{\text{Total uptime}}{\text{Number of failures}} \]

- **MTTR**: Average time required to repair a failed component
 \[MTTR = \frac{\text{Total downtime}}{\text{Number of failures}} \]

\[IA = \frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}} \text{ or } IA = \frac{\text{uptime}}{\text{uptime} + \text{downtime}} \]
Availability Measurement – Levels of ‘9s’ Availability

<table>
<thead>
<tr>
<th>Uptime (%)</th>
<th>Downtime (%)</th>
<th>Downtime per Year</th>
<th>Downtime per Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>2</td>
<td>7.3 days</td>
<td>3hrs, 22 minutes</td>
</tr>
<tr>
<td>99</td>
<td>1</td>
<td>3.65 days</td>
<td>1 hr, 41 minutes</td>
</tr>
<tr>
<td>99.8</td>
<td>0.2</td>
<td>17 hrs, 31 minutes</td>
<td>20 minutes, 10 secs</td>
</tr>
<tr>
<td>99.9</td>
<td>0.1</td>
<td>8 hrs, 45 minutes</td>
<td>10 minutes, 5 secs</td>
</tr>
<tr>
<td>99.99</td>
<td>0.01</td>
<td>52.5 minutes</td>
<td>1 minute</td>
</tr>
<tr>
<td>99.999</td>
<td>0.001</td>
<td>5.25 minutes</td>
<td>6 secs</td>
</tr>
<tr>
<td>99.9999</td>
<td>0.0001</td>
<td>31.5 secs</td>
<td>0.6 secs</td>
</tr>
</tbody>
</table>
Vendors love to brag about their nines

Even when they don’t actually know what that means...
Maximizing availability

Two complementary approaches:

High Availability (HA)
- Design systems so that failures do not result in *any* downtime
- Keys: redundancy and failover
- “No single point of failure”

Disaster Recovery (DR)
- If the HA techniques are overwhelmed (e.g. due to a site failure, major human error, etc.), be able to recover data and restore functionality
- Keys: replication and restore/failover
- “Survive the inevitable multiple failure”
High Availability (HA)
Redundancy

• Core HA concept:
 • Identify single points of failure
 • Add redundancy to eliminate
 • Need policy for how to interface with redundant system
Active/active vs. active/passive

- **Active/active**: Both redundant components used in normal operation; symmetric design
 - + Higher utilization and capacity/performance
 - – Capacity/performance is reduced on failure

- **Active/passive**: A “primary” and “secondary” system; secondary only does work if primary fails; asymmetric design
 - + Failures don’t affect capacity/performance
 - – Half the hardware is idle most of its life (low utilization)
The split brain problem

- Imagine an active/passive system
- What if the two redundant systems lose contact with each other, and each thinks its time to “take over”?
- Both are serving traffic and issuing commands!
- Result: chaos!

- Redundant computer systems must have protocol to govern takeover
Layers on which to apply redundancy

- Power
- Cabling
- Servers
- Network switch
- Storage controller
- Disks
First, let’s deal with power

- Everything has 2+ power supplies
 - Equipment can survive with half its power supplies dead
 - This protects against power supply failure
- Power comes from Power Distribution Units (PDUs) (basically rackmount power strips)
- HA power: Racks have two PDUs.
 - PDU 1 hooked to “left” power supply, PDU 2 hooked to “right” power supply
- Power supplies usually hot-swappable
 - Replace on fault without downtime

Figure from “Do dual-power supply servers increase redundancy?”, TechTarget. Julius Neudorfer.
Utility power

- Single-feed environment: both strips get power from same utility
 - Power outage? All gear goes down.
 - Still protects against accidental disconnect, power supply failure, local tripped breaker
- Double-feed environment: two separate feeds from two separate power substations
 - Also protects against utility power outage
 - Might even draw from two different power plants!
UPS: Uninterruptable Power Supply

- UPS: Uninterruptable Power Supply
 - Takes AC power in, gives AC power out
 - Keeps a big battery array charged
 - If AC power-in fails, AC power-out comes from battery array without interruption
 - DC power from batteries must be converted to AC with an inverter
 - Rated by **battery capacity (total energy)** and inverter **current capability (max power)**

- Use cases
 - Smooth power "blips" (momentary interruptions that would reboot everything)
 - Keep things running for a few **minutes**, long enough for graceful shutdown
 - Run things for a few **hours**
 - Keep things running long enough to start a **gasoline/diesel generator**

Small consumer UPS Rackmount UPS Building-scale battery array
Electric generators

- Need to survive long-term power loss?
- **Gasoline or diesel generator**
- Typically sized for whole or part of data center
- Large fuel tank on site, run time for days
- Can contract to have additional fuel brought during extended emergency
 - If fuel can’t be brought, society is probably broken enough that it’s okay your server isn’t up...

Generac Commercial 150kW (Alum) NG 240V Single Phase

- Two Line LCD Tri-Lingual Digital Nexus Controller
- Isochronous Electronic Governor
- Sound Attenuated Enclosure
- Closed Coolant Recovery System
- Smart Battery Charger
- UV/Ozone Resistant Hoses
- ±1% Voltage Regulation
- Natural Gas or LP Operation
- 2 Year Limited Warranty
- UL 2200 Listed

Generac Power Systems QT15068ANAC Details and Specifications

Add to Cart

- Free Shipping (see terms)
- Generac Referral Rebate (open)

Our Phone Lines Are Open! Call Us Toll-Free: 855-453-4494

Buy this Generator Online Today

- Model #: QT15068ANAC
- MSRP: $29,999.00
- You Save: $600.00
- Availability: Built To Order In 5-6 Weeks

Whoa! No review on this Product

Be the first to review this product and earn a chance for a $10 store credit when you place a review on this product post purchase.

Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Warranty</th>
<th>Spec's</th>
<th>Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generac Commercial 150kW (Alum) NG 240V/Single Phase Liquid Cooled Standby Generator. This premium-grade generator features a high-quality automotive style engine that runs at a low speed RPM mode (Quiet Test). This means a quieter operation and longer engine life. The QT15068ANAC delivers up to 150 kW of power and is designed for commercial use. It includes an automatic fuel shut-off feature, which saves fuel and reduces emissions. The generator is equipped with a digital display and a remote control panel for easy operation. It also has a built-in battery charger, which allows for fast charging of backup batteries.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Total redundant power picture

Figure from "Do dual-power supply servers increase redundancy?", TechTarget. Julius Neudorfer.
Layers on which to apply redundancy

- Power
- Cabling
- Servers
- Network switch
- Storage controller
- Disks
Disk-level redundancy RAID

• **RAID (Redundant Array of Inexpensive Disks)**
 • Two RAID aspects taken into consideration:
 • **Data striping**: leads to enhanced bandwidth
 • Distributes data transparently over multiple disks
 • Appears as a single fast large disk
 • Allows multiple I/Os to happen in parallel.
 • **Data redundancy**: leads to enhanced reliability
 • Mirroring, parity, or other encodings
RAID 0 ("Striping")

- Non-redundant
 - Stripe across multiple disks
 - Increases throughput

- Advantages
 - High transfer
 - Cost

- Disadvantage
 - No redundancy
 - Higher failure rate
RAID 1 ("Mirroring")

- **Mirroring**
 - Two copies of each disk block

- **Advantage**
 - Simple to implement
 - Fault-tolerant

- **Disadvantage**
 - Requires twice the disk capacity
RAID 5 ("Distributed parity")

- For each stripe, a drive stores its parity (XOR)
- Can lose ANY drive, and using parity, restore its data
- Parity is evenly distributed across drives, so two independent writes will usually engage two separate sets of disks.
XOR parity demo

- Given four 4-bit numbers: [0011, 0100, 1001, 0101]

<table>
<thead>
<tr>
<th>XOR them</th>
<th>Lose one and XOR what's left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>1011</td>
</tr>
<tr>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>Χ 0101</td>
<td>Χ 0101</td>
</tr>
<tr>
<td>1011</td>
<td>0011</td>
</tr>
</tbody>
</table>

- Given N values and one parity, can recover the loss of *any* of the values
More RAID levels exist...

- Want to know more? Take my Enterprise Storage Architecture ECE590 course
Layers on which to apply redundancy

- Power
- Cabling
- Servers
- Network switch
- Storage controller
- Disks
Redundancy: Storage controller

• So we want something like this.

Note: you almost always want storage controllers to be highly available, so they’re often sold as “two headed” units, where there’s two of everything in one box. To keep it simple, we’ll ignore that and use an example where there’s literally two boxes.

Actual back of that storage controller and its connection to a disk shelf:

This is an example of what I call the “universal HA topology”
The universal HA topology
(a term I made up)

Server A

Server B

Client A

Client B

Inter-server link

Inter-client link
See the topology?
Layers on which to apply redundancy

- Power
- Cabling
- Servers
- Network switch
- Storage controller
- Disks
Network redundancy

• Apply the Universal HA topology

• In networking, this is known as **multipathing**

• Can be applied to Ethernet or Fibre Channel (FCP)

Network configuration details that make this possible omitted for time; for details, take my Enterprise Storage Architecture ECE590
Layers on which to apply redundancy

- Servers
- Network switch
- Storage controller
- Disks
Server redundancy

- We need to make servers redundant
- We need a **topology** that does this
- The topology will make them **HA**
- This will take place in our **universe**
- what can we choose
- help
- what can we choose?????
Server redundancy

- Apply the Universal HA topology

- However, typically have more than 2 servers – storage/network usually serves pool of many servers
Software support for redundancy

- Physical connectivity is simple; software side is complex:
 - What is the effect of running two copies of the software?
 - Depends on the software!

- Many techniques/mechanisms to take advantage of redundancy:
 1. Truly redundant hardware
 2. Redundancy via hardware abstraction
 3. Redundancy via hypervisor abstraction
 4. Hypervisor-based virtual fault tolerance
 5. Application-based fault tolerance

The greyed out approaches omitted for time; for details, take my Enterprise Storage Architecture ECE590
Mechanisms for server redundancy

- **Application-based fault tolerance**
 - The user application has built-in support for some kind of HA clustering
 - May work with performance-based clustering (i.e. scaling application performance by adding more servers) or be totally separate (e.g. an active/passive app)
 - **Pro**: Application does its own consistency, can achieve higher performance than the previous application-oblivious techniques
 - **Con**: Developers have to consciously design application with this in mind
 - **Result**: Depends on how app is built, but typically fault-tolerant apps allow server failure without measurable effect to outside world.
 - **Example**: Microsoft SQL Server Failover Clustering
We did it!

- Servers
- Network switch
- Storage controller
- Disks

Power

Cabling
But what if...?

- A meteor lands on our datacenter?
- Can we be HA against that?
 - Surprisingly, yes (for a small enough meteor)!
Zooming out some...

Site-level protection

- Power
- Cabling
 - Servers
 - Network switch
 - Storage controller
 - Disks
Thought experiment

• HA works if each redundant pair is 1 meter away
• Does it still work at 2 meters?
• Does it still work at 4 meters?
• Does it still work at 8 meters?
• ...
• What’s the limit?
• What affects the limit?
 • Latency
 • Ability of cable to carry data that far
• Practical answer: around 100km (depends on many things)
 • FYI: (100 kilometers) / the speed of light = 333 microseconds
What if we put our two halves far apart?

- Result: Metro-scale clustering
 - “Metro-scale” = Around the size of a city

- Often deployed just at campus-scale (a few kilometers); sometimes deployed all the way between cities (especially in Europe, where cities are closer)

- Can also be applied to just storage: then it’s a form of backup/replication, which we’ll cover when we talk about disaster recovery

- **Result:** You can lose an ENTIRE DATACENTER and keep serving traffic with little to no interruption

- **Example:** NetApp Metrocluster plus VMware Stretch Cluster
Connectivity

• Connection between sites typically dedicated optical fiber
 • Fiber optics can run data faster over much longer distance than copper

• How to get?
 • Dark fiber: abandoned pre-existing line
 • New fiber: pay huge cost to run a new buried line
 • Leased line: pay for bandwidth on existing dedicated lines

• Can also tunnel over existing network or the internet
 • Performance penalty, or even unpredictable performance
 • Can be okay for iSCSI/NAS, not common for FCP
But what happens if something overwhelms these protections? Need *disaster recovery* (next).