
ECE 551D
Fall 2022

Test 1—Version 1

Name: NetID:

There are 5 questions, with the point values as shown below. You have 70 minutes with a total of
45 points. Pace yourself accordingly.

This exam must be individual work. You may not collaborate with your fellow students. However,
this exam is open notes, so you may use your class notes, which must be handwritten by you.

I certify that the work shown on this exam is my own work, and that I have neither
given nor received improper assistance of any form in the completion of this work.

Signature:

Question Points

1 Concepts 5

2 Reading Code 9

3 Testing 12

4 Algorithm 12

5 Writing Code 7

Total 45

1

Question 1 Concepts [5 pts]

For all parts of this question, you must blacken the circle of the answer you choose. We can
only see the region with the circles when grading.

1. Based on what you know about the Seven Steps, which of the following is a consequence
of writing code without planning first?

a Not having a plan to refer to when you need to debug, which causes great delays.

b Missing important behaviors of the code that cannot be clearly seen without a
well-drawn plan.

c Increased chances of introducing bugs when maintaining or adding functionality
to the code.

d Realizing you need to completely revise your implementation to address a test
case.

e All of the above are consequences.

2. Assuming a system with 8-bit integers, what would be the result of the following op-
eration using signed integers? Specify the numerical result and whether the operation
overflows.

0x88 + 0xF6

a 0xFE, no overflow

b 0x7E, overflow

c 0xEE, overflow

d 0xEE, no overflow

e None of the above

2

3. Suppose you want to keep track of patients at a clinic. You might want to track the
following attributes:

• Full name

• Date of birth

• Phone number

• Medications

Which programming construct is the best choice to represent a patient?

a Enum

b Struct

c Typedef

d String

e None of the above

4. Which component of a compiler integrates the program’s individually compiled mod-
ules into a form that can be executed?

a Linker

b Assembler

c Compiler

d Preprocessor

e None of the above

5. Which one of the following practices is the best way to make your code easier to debug?

a Incremental development

b Writing a tail-recursive implementation

c Deep understanding of syntax

d Using Emacs

e None of the above

3

Question 2 Reading Code [9 pts]

What is the output when the following C code is executed? (Assume appropriate header
files have been included.)

1 void g(unsigned x, unsigned y) {

2 if (x < y) {

3 printf("%d\n", x);

4 return;

5 }

6 int a = x % y;

7 x /= y;

8 int b = x % y;

9 x /= y;

10 if (a < b) {

11 printf("%d\n", a);

12 g(x*y + b, y);

13 }

14 else {

15 printf("%d\n", b);

16 g(x*y + a, y);

17 }

18 }

19 int main(void) {

20 g(48392, 10);

21 g(32, 3);

22 return EXIT_SUCCESS;

23 }

Your output should be 9 lines long. Please write each line where indicated below:

Output line 1

Output line 2

Output line 3

Output line 4

Output line 5

Output line 6

Output line 7

Output line 8

Output line 9

4

Question 3 Testing [12 pts]

Suppose the following code is correct to solve a certain problem:

1 int f(int x, int y, int z) {

2 int temp = x - y;

3 do {

4 temp = temp + 1;

5 z = z - 2;

6 } while (temp < z); //Mistake here: temp <= z

7 if (temp % 3 == 0) {

8 return x + temp;

9 }

10 else {

11 return y * z;

12 }

13 }

Imagine that instead of this correct code, a programmer makes a mistake on line 6 and writes
temp <= z instead of temp < z.

Write one test case that would detect the above error (i.e., exhibit different behavior than
the correct program):

• Input:

• Expected return value:

• Return value if mistake were made:

Next, write one additional test case which, when combined with your case above, gives you
statement coverage on the correct code:

x = y = z =

Finally, write two additional test cases, such that your test cases together give you path
coverage on the correct code:

x = y = z =

x = y = z =

5

Question 4 Algorithm [12 pts]

The table below shows the result of executing an algorithm with one parameter N , which
must be a non-negative integer. For values of N from 0 to 6, the algorithm produces the
following sequences of numbers:

N Output

0
1 5 4
2 6 8 8 9
3 7 4 4 3 1 1
4 8 12 12 13 15 15 16 18
5 9 4 4 3 1 1 0 -2 -2 -3
6 10 16 16 17 19 19 20 22 22 23 25 25

Fill in the blanks below to complete the algorithm used to generate these sequences:

Given a non-negative integer N :

Create a variable x and initialize it to .

Create a variable y and initialize it to .

Count from to (exclusive) , and

For each number that you count (call it i),

Print the value of .

If is even, then

Update x to be .

Otherwise,

Update x to be .

Update y to be .

6

Question 5 Writing Code [7 pts]

Translate your algorithm from the previous question into C code. Make sure to specify the
parameter(s):

#include <stdio.h>

void num_seq() {

}

7

