
This document is intended as an introduction to SML for people with prior programming
experience. The specific variant of SML we will be using is SML-NJ (Standard ML of New Jersey),
which we assume you already have installed. Emacs (with SML mode) is highly recommended for
editing your code. We will also assume that you are familiar with emacs—if not, you can find a
variety of excellent tutorials and references on the internet.
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1 Getting Started

SML is a strongly typed functional language, with parametric polymorphism. However, unlike many
strongly typed langauges that you might be familiar with, SML infers the types of all variables—
you do not (typically) have to write them down yourself. The type it infers is the most general
type—that is, whenever polymorphism is safe, SML will infer a polymorphic type for any variable
or function.

SML is a functional language—computation (typically) is comprised of functions applied to
values. These functions return new values, which are then passed to other functions. Some of these
values might themselves be functions, which can be passed as arguments to, or returned from other
functions. However, SML is not purely functional: it provides ways for side-effecting computations
if you so desire.

SML-NJ has a “read-eval-print-loop” (REPL). When you start SML (either by running sml at
the command line, or by doing M-x sml-mode in emacs), you will get a banner stating the version,
and then a prompt that is a single dash (-). If you type a valid SML expression at this prompt,
SML will evaluate it and print out the value.

The “canonical” first program to write in any language is “Hello World.” At the SML prompt,
type

"Hello World";

and hit enter. SML will evaluate this expression, and print the result:

val it = "Hello World" : string

The string literal Hello World is already a value, so SML simply evaluates it to itself. It then binds
it to the variable it, since you did not ask for it to be bound to anything else in particular (thats
what the val it = part is). It also reports the type of its answer, in this case a string.

Note that the semi-colon at the end of the line is here to tell the REPL that we are done typing
input—it is not used to end every statement. If you forget to put the semi-colon when writing at
the REPL, you will get an = prompt, which indicates that SML is expecting you to continue what
you were typing. If you simply forgot the semi-colon, you can just type it and hit enter.

At this point you may argue that the canonical first programming excercise is to print Hello
World, not to simply evaluate the expression. We can do that in SML as well, by using the print

function. Type the following at your SML prompt:

print "Hello World\n";

Note that we added a \n to the end of the string—as with many programming languages, \n is
the escape sequence for a newline character. When you evaluate this expression—which passes the
string "Hello World\n" to the print function, SML will print:
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Hello World

val it = () : unit

The first line of this output is the result of the call to print. The second line of the output is the
value that the expression evaluated to. In this case, the value is () (which is pronounced unit)
of type unit. The unit type—which has only one value: unit—is the type used to indicate no
meaningful value, much like void in C or Java. It is typically used in side-effecting computations
(print is a side effecting computation: it has the side effect of outputting a string, but computes
no meaningful value).

Note that one subtle detail which may confuse novice-SML programmers: it did not change
types or values in the above example—there are two different variables named it. The first one has
type string and value "Hello World", the second one has type unit and value unit. This may seem
strange and subtle, but it is important. Once you bind a value to a variable, that binding never
changes. You can have other variables later of the same name, but cannot change what has already
been bound. If you re-bind a name to a new value, subsequent uses of that name will reference the
new binding. However, anything between the first and second binding will continue to refer to the
original binding.

When writing larger pieces of code, you will not want to type it all in at the REPL—any
mistake or changes will be a pain to edit. You can tell SML to load a file with the use command:
use "myfile.sml". Later on, we will see how to use the Compilation Manager to compile and
load a large set of files, but for now, either enter short pieces of code at the REPL, or type longer
pieces of code into a file, and use use.

2 Basic: Math, Conditionals, Functions, and Tuples

Printing strings is useful, but most computation revolves around math. SML supports integers
(of type int) as well as floating point numbers (of type real). If you type 3 as your SML REPL,
SML will report that it evaluates to 3, and is of type int. Likewise, if you evaluate 3.14, SML will
evaluate it to 3.14, and tell you that it is of type real.

SML has infix math operators for addition (+), subtraction (-), and multiplication (*) for both
integers and reals. You can experiment with expressions like 2+4, 3.14 * 6.2, etc.. and it will
evaluate them. These operators all have the standard precedence and associativity that you expect.
SML also has division, however, for real numbers it is the / operator, but for integers, the operator
is called div (it is still infix: 99 div 11). Integers also support mod, which is another infix operator.

Note that the +,-, and * operators are overloaded to either take two ints and return an int, or to
take two reals and return a real. This overloading is a special case that is built into the langauge for
a handful of mathematical operators. You cannot, in general do your own operator overloading like
this. Also, note that you cannot “mix and match” ints and reals with these operators: 3 * 6.2 is
ill-typed—you must either explicitly convert the int to a real, or the real to an int before operating
on them. We will see how to do such a conversion later.

2.1 Conditionals

SML has a type bool, with two values: true and false. It also has the standard comparison
operators: <, <=, >, >=, = (equal to), and <> (not equals). There is no need to have different
operators (e.g. = vs ==) to distinguish assignment from comparison, as they cannot appear in
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the same gramatical contexts. SML also has not (which negates a boolean), andalso (which
performance a logical and), and orelse (which performs a logical or).

SML has two ways to make conditional decisions (although, as we shall see briefly, one is
actually just short-hand for the other). Both styles are conditional expressions, not statements—
they evaluate to a value. If you are familiar with C or Java, think of the cond ? expr1 :expr2

construct.
The first way to write a conditional expression is with if-then-else. In SML, since this is a

conditional expression, there is always an else—anything else is a parse error. The syntax of
if-then-else is

if expr then expr else expr

where the first expression (conditional test) must have type bool, and the other two expressions
must have the same type. For example:

- if 3 < 4 then "hello" else "goodbye";

val it = "hello" : string

The second way to write a conditional is the case expression. The case expression is much more
general than if-than-else, and much more powerful than the switch-case construct of C or Java.
The SML case expression has the syntax

case expr of

pattern => expr

| pattern => expr

| pattern => expr

...

The case expression matches the first expression against each pattern, and evaluates to the expres-
sion on the right-hand side of the matching pattern. We will learn more about pattern matching as
we introduce other data types/structures throughout the document. For now, we will suffice to say
that any constant can be used as a pattern, and that _ can be used to indicate “match anything.”
For example, if x is an int, then we could have

case x of

0 => "its zero"

| 1 => "its one"

| _ => "something else"

Note that all cases must result in the same type.
A bit of trivia: if-then-else is typically converted to case inside the compiler: if e1 then e2 else e3

is simply

case e1 of

true => e2

| false => e3
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2.2 Functions

Now that we have some basic building blocks, we are ready to start writing some functions. We
will start with a very simple example function:

fun add3 x = x + 3

The keyword fun tells SML that we are defining a function. After that comes the name of the
function we are defining (add3) followed by the name of its argument (x), then an equal sign, and
an expression for the function’s body. Note that in SML all functions take exactly one argument
and return exactly one value (this may sound restrictive, but we will see shortly that its really no
problem at all).

If we evaluate the above function at the REPL, it will report:

val add3 = fn : int -> int

Here, SML is telling us that it has bound a value to the name add3. The value is represented
as simply fn, indicating that the value is a function. The type is reported as int -> int (read
“int to int”). The arrow indicates a function type. The type on the left side of the arrow is the
argument type, and the type on the right side of the arrow is the return type.

SML infered the types of add3 and x for us. It sees that x is being added to 3, so x must be
an int. Knowing that x must be an int, and that x is the argument to add3, SML figures out that
add3 must take an int as an argument. It figures out that add3 must also return an int because
the body (x+3) has type int.

If we want to use the add3 function with an argument of 4, we write:

add3 4

To a C or Java programmer, this may seem odd: the function call lacks parenthesis. In SML,
writing two expressions next to each other means “function call”. Parenthesis are only needed for
order of operations/binding, or for tuples (which we will discuss momentarily).

We can write more sophisticated and interesting functions using recursion. For example we can
write the factorial function:

fun fact x =

if x = 0

then 1

else x * fact (x - 1)

Try entering the factorial function at your REPL, and then try calling it with a few values.

2.3 Tuples and pattern matching

An alternative way to write factorial is with tail recursion, however, at first glance, this seems
problematic: tail recursive factorial appears to require two function arguments, but SML only
allows one argument for any function. This restriction is not problematic, as the argument (and
return value) may be tuples—pairs, triplets, quadruplets, etc... of data.

A tuple is written in parenthesis with commas separating its elements, for example (3,5) or
(7,true,"hello"). The first of these has type int * int (e.g., a pair of integers), and the second
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of these has type int * bool * string—a three tuple with an int, a bool, and a string. In types
* indicates a tuple, in expressions, * represents multiplication. Note that () is actually a tuple with
zero elements, and as mentioned before has a special name: unit.

There are functions to access the individual elements of tuples, but they are hardly ever used.
Instead, tuples are frequently deconstructed by pattern matching—one of the nicest features of
SML. The easiest way to explain a pattern match is to start with an example:

fun fact_tail t = case t of

(0,ans) => ans

| (x,ans) => fact_tail (x-1, ans * x)

Here, fact_tail takes a single argument (t), which is a tuple (specifically, int * int). The body of
the function uses case to match on t and pull it apart. The first case has a pattern that matches
a tuple where the first element is 0. In the spot for the second element, there is a variable name,
so this variable is bound to the second element of the tuple. The right hand side of the => is the
expression to evaluate to when this case is matched. The second case, started by the |, matches any
two element tuple—both elements have variables for their patterns. When this pattern is matched,
x is bound to the first element of the tuple, and ans is bound to the second element of the tuple.

Functions with pattern matching are so common that SML allows a short hand, where the
pattern match is written directly as the function argument:

fun fact_tail (0,ans) = ans

| fact_tail (x,ans) = fact_tail(x-1, ans * x);

Once you are used to the pattern matching syntax, you will love it. It is incredibly readable,
and easy to write.

2.4 Let

One last annoying feature remains about our tail-recursive implementation of factorial: what we
wrote is really a “helper” function. We want to compute the factorial of x, but need to pass in
(x,1). It would be very nice if we could package up the helper inside a function that just takes an
int, and hide the helper from the rest of the program. Fortunately, we can do this with let, an
expression which allows us to make local declarations. For our factorial function, we can write this:

fun fact x =

let fun help (0,ans) = ans

| help (x,ans) = help(x-1, x * ans)

in

help(x,1)

end

Here the body of the fact function is a let expression. The let expression allows us to bind one
or more names (functions with fun or values with val), and then evaluate an expression in the
scope of those bindings. The scope of all of those name bindings is limited to the let expression.
Multiple bindings are possible, each of which can see all preceeding bindings in the same let (for
those familiar with Scheme, SML’s let is like Scheme’s let*):
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fun complexFunction (x,y,z) =

let val a = f(x,y,32)

val b = g(z,12,false)

fun help1(0,ans) = ans

| help1(n,ans) = help1(n-1, if x mod b = 0

then ans + a

else ans + 2 * z)

val c = help1 (y*z, b)

fun test n = x < a andalso y > z

in

if test b

then c + 1

else c - 1

end

The above (contrived) example assumes there are previously defined functions f and g, which is
uses to compute the values for a and b respectively.

Earlier, we discusses that names can be re-bound, but not changed. Now that we have intro-
duced let, we can see a concrete example of this in action:

fun silly x =

let val a = x

fun addA b = a + b

val a = x + 1

in

addA 3

end

While this is a rather contrived example, you can play with it at the REPL to see that the addA
function sees the original binding to a (that is, the value of x), not the subsequent re-binding of a
(to x+1).

Let also allows for single-case pattern matching with vals. One use of this would be to pull
apart tuples returned by functions (or evaluated from other expressions).

fun f x = (x+1, x*x)

fun g y =

let val a = y * y + 3

val (b,c) = f a

in

b+c

end

Becoming familiar with let will likely help you aclimate to SML much more quickly. It is very
convient for writing large, complex functions, and lets you write in a slightly more familiar “assign
a value to a variable, then use it to assign a value to the next variable” style. Just remember that
once you bind the variables, they never change.
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2.5 Mutual Recursion

Mutually recursive functions are quite handy in a variety of circumstances. In SML, they can be
defined with the and keyword (not to be confused with andalso). For mutually recursive functions
the functions must be defined consecutively (no other definitions in between them, and the second
and later functions in a mutually recursive group use and instead of fun:

fun isEven 0 = true

| isEven x = isOdd (x-1)

and isOdd 0 = false

| isOdd x = isEven (x-1)

3 Data types and data structures

We have already seen one simple way to aggregate data: tuples. Tuples let us combined multiple
pieces of data together into one piece of data, with an appropriate type: an int and a string are
paired together to form an int * string tuple. SML provides other ways to aggregate data,
including the ability to create your own (potentially recursive) data types.

3.1 Records

Tuples are great for a few items (2–4), or maybe a few more if they are just being used as function
parameters/return values. With very large numbers of fields, tuples can become cumbersome, as it
may become difficult to remember which item is which.

SML also supports records with named fields. The syntax for a record is {name=value, name=value, ...}.
For example:

{x=3, y=17, z=4}

is an expression which creates a record with three fields (x,y, and z) having values 3,17, and 4
(respectively). The type of this record is

{x:int, y:int, z:int}

Records can be pulled apart either with pattern matching, or with field selection functions.
Field selection functions are named with a # and the field name, for example #x, #y, etc. For
example:

let val r = {x=3, y=17, z=4}

in

#x r

end

Pattern matching with records can be done in a couple ways. In one way, the field names are
used as the variables to be bound to:

fun f {x,y,z} = x + y * z
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However, this does not work if one wishes to match on two records with the same field name,
or to specify constraints on the field values. One can also write the pattern for each field after an
equals sign:

fun f {x=0, y=1, z} = z

| f {x=0, y , z} = y+z

| f {x , y , z} = x * (y+z)

fun g ({x=a,y=b}, {x=c,y=d}) = a*c + b *d

Sometimes for records with many fields, it becomes cumbersome to write down all of the field
names in a pattern match, especially if you only care about a couple. SML has the concept of
flex records, where you are allowed to write ... to mean “there are more fields I am not naming,”
however, SML must still be able to figure out exactly what type the record is when it runs its type
inference algorithm. Typically this means that either another case fully specify the record fields,
or the programmer explcitly annotates the type (in at least one case).

For example, in the following function, the first two cases leave out z and q with ..., but the
last case specifies all of the record fields, allowing SML to infer the correct type:

fun f {x=0,y ,...} = y

| f {x ,y=0,...} = x

| f {x ,y ,z,q} = x*z + y*q

For the other approach (naming the record type) to be useful, we need to introduce the fact
that you can give types names:

type myRec = {x:string,

y:int,

z:bool,

a:int,

b:int,

c:int}

fun f ({z=false,...}:myRec) = 0

| f {a,y, ...} = a + y

There are two things to note from the previous example. First, SML does not care about the order
of record fields, only their names. a,b is the same as b,a. Second, parenthesis are required around
({z=false,...}:myRec), to cause the type annotation to bind to the record, and not the function
result type. If you write f (a:t) you are saying that and a has type t. If you say f a:t you are
saying that f returns type t.

Tuples are actually a special case of records—they have fields named 1, 2, 3... You can see this
with the following code fragment (which appear ill-typed, unless you know that tuples are actually
records):

let val {1=x,2=y} = (3,4)

in

x + y

end
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Using this fact in the above ways is not terribly useful, and rather discouraged (as its counter-
intuitive, and thus confusing). However, there is one useful application of this fact: the functions
#1, #2, etc can be used to pull individual fields out of tuples when desired. As mentioned earlier,
pattern matching is much more common, and typically preferred, however, this is possible when
desired.

3.2 Lists

Tuples and records are great if you want to combine a fixed number of elements. However, fre-
quently, programmers need dynamic data structures to accomodate varying sized storage. The
most prevalent data structure in SML is the list. List is a “type constructor”—that is, “list” is not
a type by itself, but given another type it constructs a type. For example, “int list” or “string list”
are types. Since “int list” is a type, and “list” is a type constructor, “int list list” is also a valid
type—a list of lists of ints.

In SML, we can make lists in two ways. First, we can write list literals with square brackets:
[1,2,3] is a list of three ints (1, 2, and 3 in that order). An example of a function that makes a
list using this syntax would be:

fun f x =

let val a = x * 2

val b = x * 3

in

[0, x, a, b, x * 4]

end

This function has type int -> int list (that is, it takes an int, and returns a list of ints). Think
for a second about what it does, and then try it out at the REPL and see if you understand it.

The other way to construct lists is with the :: operator. If you are familiar with Scheme or
LISP, :: works much like cons does in those langauges. If you are familiar with C or Java, think
about linked list “add to front”, but remember that we are making a new list, not changing an old
one.

We could re-write our previous example using :: (in fact, this is what the compiler translates
our list literal into):

fun f x =

let val a = x * 2

val b = x * 3

in

0::x::a::b::(x*4)::[]

end

SML allows for pattern matching on lists using either syntax. For example, the following
function computes the length of a list. The first pattern match uses the [] syntax for the empty
list, and the second uses :: to pull match a non-empty list whose first item we do not care about
(remember that _ means “dont care”) and whose rest is bound to l.

fun len [] = 0

| len (_::l) = 1 + len l
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You can also write things like the following function, which have pattern matches for the empty
list, a one item list (binding the single item to a, a two item list (binding the two items to a and
b), and any longer list (binding the first to a and the rest to l.

fun f [] = 0

| f [a] = a+1

| f [a,b] = a * b

| f (a::l) = a + f l

3.3 Polymorphism: flexibility in your types

Consider the following code to operate on a list:

fun insLst (x,[]) = [x]

| insLst (x,a::l) = a::x::l

This function takes a pair with a “thing” and a list of “things”—but what type of thing? We
could do

insLst (4,[1,2,3])

or

insLst ("x",["y","z","q"])

or

insLst ([1,2,3],[[4,5,6],[],[9,7,3]])

In the first, insLst has type int * int list -> int list, in the second string * string list

-> string list, in the third, int list * int list list -> int list list. This seems prob-
lematic since SML must assign insLst exactly one type when it type checks the function, but it
seems to have three different types.

What actually happens here is that SML assigns insLst a polymorphic type—specifically
’a * ’a list -> ’a. This polymorphic type can be instantiated differently at each use of
insLst—replacing ’a with any valid type (int, string, and int list above).

The types of functions may have multiple type variables, for example:

fun f (a,b) = (b,a)

Here, f has type ’a * ’b -> ’b * ’a It can be instantiated as int * string -> string * int,
int * int -> int * int, int list * int -> int * int list etc. Note that when SML infers
the type of a function, the algorithm it uses is guaranteed to find the most general type of that
function.

Polymorphic functions and data-types are quite powerful, as we will see shortly.
SML provides one special case of polymorphism: any type, but where equality comparisons are

possible. Such types are called “eqtypes” and are represented with two ticks instead of one: ’’a.
For example in the contains function:

fun contains (_,[]) = false

| contains (x,a::l) = x = a orelse contains(x,l)
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It works on any type of list, as long as we can compare an element of that list to something of the
same type and see if they are equal. This function has type ’’a * ’’a list -> bool (SML/NJ
will also warn you that you are “calling polyEqual” which is not a big deal, and you can safely
ignore the warning).

This function will work on int * int list, since ints can be compared for equality, but will
not work int ( (int -> int) * (int -> int) list) since functions cannot be compared for
equality.

3.4 Datatypes : defining your own

SML allows the user to define his/her own datatypes, which may be recursive (or mutually recur-
sive) and/or polymorphic.

We have actually already seen one datatype, which is builtin: the list.
Datatypes are defined in terms of their constructors, for example:

datatype foo =

X of int

| Y of string * bool

| Z

Here, we define a new datatype (foo), with three constructors (X, Y, and Z). X has type
int -> foo, Y has type string * bool -> foo and Z has type foo. foo is now a type just like
any other: we can have foo lists, foo * int pairs, etc.

This means that X 3, Y(“hello”,false), and Z are all expressions of type foo.
Just like any other type, we can pattern match on foos, which is useful to pull them apart:

fun myFun (X x) = x

| myFun (Y(s,b)) = if b then size s else 42

| myFun Z = 0

When we define the datatype this way, SML knows not only that these constructors are the
ways to create a foo, it knows that these are the only ways to create a foo. This lets SML determine
if the match is exhasutive and/or redundant.

We can define the datatypes to be recursive by using the name of the newly defined type in the
argument lists of one or more of the constructors:

datatype file =

Directory of string * file list

| NormalFile of string * int * string

Just like functions, datatypes can be made mutually recursive using and:

datatype a =

A of int * string

| B of bool * b

and b =

C of int * int list

| D of a list
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Datatypes may be made polymorphic like this:

datatype ’a tree =

NODE of ’a * ’a tree * ’a tree

| LEAF

You can specify two ticks to require and eqtype:

datatype ’’a tree =

NODE of ’’a * ’’a tree * ’’a tree

| LEAF

Note that lists are defined as

datatype ’a list =

:: of ’a * ’a list

| nil

and that :: is made into an infix operator (there is also special syntax for list literals that you
cannot create for your own data types).

Another really useful data type is the option type:

datatype ’a option =

SOME of ’a

| NONE

An int option for example, lets you return SOME(an int) to indicate a valid int answer, or
NONE to indicate “no answer”.

4 Interlude: Compiler Errors

One major difficulty that novice SML programmers often face is understanding and correcting
compiler errors. This difficulty tends to arise from the fact that the compiler works differently in
many ways than typical compilers for most other languages like C or Java.

4.1 Parse Errors

One major difference between SML and compilers that you might be used to is the way that SML
handles syntax errors. SML’s parser uses an error correction algorithm where it attempts to insert,
remove, or change lexical tokens to give a correct gramatically correct parse. This scheme results in
SML reporting parse error messages in terms of what it ended up changing to get a correct parse.
For example, suppse you write this:

let val x = [1,2,3

in

x

end

SML will report the following error message:
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temp.sml:2.2 Error: syntax error: inserting RBRACKET

This indicates that the best solution that the parser was able to come up with was to insert a
“RBRACKET” token (a right square bracket) to get a correct parse. Note that this is the error
message you get if you load the file with use. If you type the same code in at the REPL, you get
a confusing error message:

stdIn:34.2-36.5 Error: syntax error: deleting IN ID END

Where the parser decides to drop in x end in the hopes of finding more correct tokens later (e.g.,
you continue typing ,4]. If you are getting errors with your code, it is often better to save it in a
file and use that file, to get better error messages.

Another thing to understand about the error correction algorithm is that the parser chooses a
fix that matches the grammar. There may be many options, and it has no way of trying to pick
the “right one,” even when only one makes sense for the program. Consider the following program,
which has a mis-match between an left square bracket and a right parenthesis:

let val x = [1,2,3)

in

4::x

end

SML’s parser will report the following correction:

temp.sml:1.13 Error: syntax error: replacing LBRACKET with LPAREN

That is, it decided to try replacing the left square bracket with a left parenthesis:

let val x = (1,2,3)

in

4::x

end

This program is gramatically correct, but ill-typed. The parser is not smart enough to realize that
this is the wrong choice, and it should replace the RPAREN with an RBRACKET.

When you first start having parse errors, the reference to specific token names may not be
terribly information. However, as you write and compile more code, you will become accustomed
to them. Here are some common token names to get you started out:

Token Name Meaning

(any keyword) (That keyword)

LPAREN/RPAREN Left and right parenthesis:()

LBRACKET/RBRACKET Left and right square brackets: []

LBRACE/RBRACE Left and right curly braces:{}

ARROW An arrow, as in a function type: ->

DARROW A “double” arrow, as in a case: =>

ID An identifier x, fact, etc..

WILD The “wildcard” or “dont care” pattern: _

VECTORSTART The start of a vector literal: #[

(other punctuation name) self-explanatory by name

EOF End of file

Andrew Hilton, 2013 14



SML Introduction 4.2 Type Errors

4.2 Type Errors

There are two aspects of SML’s type errors which are confusing to new SML programmers. First,
SML may infer the incorrect type for a variable from an erroneous use, then report type errors on
the correct use. Consider this function:

fun f x =

let val y = "My input value is " ^ x ^ "\n"

val () = print y

val z = x * 3

in

z + (x div 4)

end

The programmer likely intended for x to be an int, and the actual error is that x is concatenated
with strings without a conversion (i.e., Int.toString x). However, SML infers the type for x as
string, and then reports errors where user of a string is not valid. In more complex code, it may
help to explicitly annotate a type, e.g.:

fun f (x:int) =

let val y = "My input value is " ^ x ^ "\n"

val () = print y

val z = x * 3

in

z + (x div 4)

end

to help find the actual error. This annotate forces SML to use int as the type for x, causing it
to detect the correct error.

Note that f x : int annotates the return type of f as an int, and says nothing about x.
The other confusion aspect of type errors is the terminology that SML uses. For example, the

following error:

temp.sml:3.6-3.14 Error: operator and operand don’t agree [literal]

operator domain: string list

operand: int

in expression:

someFun x

sounds somewhat complex, but is really saying “I expected a list of strings (string list), but have a
thing that is an int—thats not right”.

Here, “operator” is refering to the function hd, and the operand is x. The operator domain is
the type that the operator (hd) expects (a list of things) and the operand (x) has type int.

Another term that new SML programmers are unfamiliar with is “tycon mismatch”—this stands
for “type constructor mismatch” and happens when SML’s type inference algorithm needs a type
made from two incompatible type constructors (that is, one thing is used in incompatible ways,
which would require a type constructed from two different things). For example, this code:
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fun f x =

let val (a,b) = x

val q = a + b + 3

val [c,d,e,4] = x

in

q + c + d - e

end

produces the error:

temp.sml:4.6-4.19 Error: pattern and expression in val dec don’t agree [tycon mismatch]

pattern: int list

expression: int * int

in declaration:

c :: d :: e :: <pat> :: <pat> = x

SML infers the type of x as int * int—a pair of ints, but has run into problems when trying to
reconcile that with pulling x apart by a pattern match into a list of ints. Here, SML is complaining
that the type for x would have to be made from two different (and incompatible) type constructors:
one the one hand it needs to be made from the “*” constructor (int * int) and on the other, from
the “list” constructor (int list).

4.3 Other Errors

For help on other errors, see http://www.smlnj.org/doc/errors.html

5 Practice Excercises 1

Programming and programming langauges are not something you can learn by reading. You also
need to practice. Before continuing, it is useful to stop here and work some practice problems.
Write each of these functions, and test them out at the REPL.

1. Write the min function which has type int * int -> int and returns the smaller of its two
arguments.

2. Write the fib function which has type int -> int and computes the nth Fibonacci number.

3. Write the isPrime function which has type int -> bool and determines whether or not its
argument is prime.

4. Write the function sumList which has type int list ->int and computes the sum of all of
the items in the list.

5. Write the function squareList which has type int list -> int list and returns a list of
the same length as its argument, where each item in the returned list is the square of the
corresponding item in the argument list. For example, squareList [2,5,1,3] should return
[4,25,1,9]
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6 Higher Order Functions

SML allows functions to be treated just like any other value: they can be passed as arguments
to other functions, returned from other functions, put in lists, trees, or other data structures.
Pretty much the only thing you cannot do with functions is test them for equality (such a test is
undecidable).

Why would we want to do such a thing? One thing we might want to do is have a generic
“max” function which allows us to pass in different ways to compare things (especially so that it
can take different types:

fun max gt =

let fun lp curr [] = curr

| lp curr (a::l) = if gt(a,curr)

then lp a l

else lp curr l

in

lp

end

This max function exhibits both taking a function as a parameter (gt) and returning another
function (lp) as its return value.

If we want to do a “normal” max on int lists, we could do:
val maxInt = max (op >).
Note that op > is the syntax to take an infix operator (>) and get the function value assiocaited

with it. Here, maxInt has type int -> int list -> int. That means it is a function which
takes an int, and return an int list -> int function. Suppose we know that all our int lists are
non-empty and contain positive values. We could do

val f = maxInt 0 to get an int list -> int function that will use the normal “greater
than” ordering on lists. We can use f on a bunch of different int lists, and it will work fine.

We could also pass our max function different orderings on ints, or even comparison functions
for different types.

We might improve our max function slightly to use options, so that we don’t have to pass the
start value in from outside:

fun max gt [] = NONE

| max gt (a::l) =

let fun lp curr [] = curr

| lp curr (a::l) = if gt(a,curr)

then lp a l

else lp curr l

in

SOME(lp a l)

end

This function is a bit less kludgy, since it handles the corner case of the empty list correctly,
no matter what the code that uses it does (and by returning an option, it forces that code to deal
with the answer of “there was nothing there”).
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The function has the type

(’a * ’a -> bool) ->

’a list -> ’a option

That is, you give it a comparison function, and it gives you back a function which takes a list and
returns an option with SOME of the largest element, or NONE for the empty list.

So now, val maxInt = max (op >) gives us a maxInt function which has type int list -> int option.
Note that we can write anonymous functions with the keyword fn. Suppose we want to examine

a list in such a way that all even numbers are treated as greater than all odd numbers. We could
do

val weirdMaxInt =

max (fn (x,y) =>

if x mod 2 <> y mod 2

then x mod 2 = 0

else x > y)

Here we make an anonymous comparison function (we don’t give it a name) which takes a pair
of integer (x,y), and returns a boolean as we want.

Higher order functions and lists are so ubiquitous in SML that it comes with three higher order
functions to process lists that you should learn to love: fold, map, and filter. fold comes in two
flavors foldl and foldr.

6.1 map

We’ll start with map, which has type (’a -> ’b) -> ’a list -> ’b list. What this says is “you
give me a function that transforms ’a s into ’b s, and I will give you a function that transforms lists
of ’a s into lists of ’b s”.

For example, map (fn x => x -1) is a function which takes a list of ints and returns a list of
ints where all values are one smaller. map is basically written like this:

fun map f [] = []

| map f (a::l) = (f a)::(map f l)

6.2 filter

filter has type (’a -> bool) -> ’a list -> ’a list. This basically says “give me a function
that says to keep something or throw it away, and I’ll give you a function that filters the list
according to that rule”.

For example, filter (fn x => x mod 2 = 0) is a function that filters lists keeping all even
numbers and discarding all odd numbers. filter basically looks like this:

fun filter f [] = []

| filter f (a::l) = if f a

then a::(filter f l)

else filter f l
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6.3 fold

Both versions of fold (foldl and foldr) have type:

(’a * ’b -> ’b) ->

’b ->

’a list -> ’b

This type is the most complex, but these functions are also the most powerful. Here, ’a is the
type of things in the list, and ’b is the type of the answer at each step. You pass fold a function
which takes an item from the list (a ’a) and the current answer-so-far (a ’b) and the function returns
the newest answer-so-far. You then pass fold the starting answer-so-far. It returns a function which
performs this operation on a list and gives you your answers.

For example, here is a way to write the sum function to sum a list of integers: val sum = foldl (op +) 0

The function to do at each step is + (add: type int * int -> int\verb). And we start at 0 as
our answer-so-far. The resulting function will sum any list of integers.

We can also re-write our earlier max function:

fun max gt [] = NONE

| max gt (a::l) =

let fun pick(a,b) = if gt(a,b)

then a

else b

in

SOME(foldl pick a l)

end

Note that once you are accustomed to the functions, using them makes your code imminently
readable: you don’t have to slog through the basic list processing, you just look at “what are you
doing” and “where are you starting”.

The two variants of fold (foldl vs foldr) pick the order in which the list is processed. For
communative side-effect-free operations like addition, either one works, however, for some things,
order matters.

foldl works left-to-right. That is, it applies the function to the starting answer and the first
element of the list. Then takes the resulting answer and uses it with the second element of the list,
and so on. foldl is basically:

fun foldl f ans [] = ans

| foldl f ans (a::l) = foldl f (f(a,ans)) l

foldr works right-to-left. It applies the function to the starting answer and the last element of
the list, then works backwards. That is, foldr is basically

fun foldr f ans [] = ans

| foldr f ans (a::l) = f(a,foldr f ans l)

For those of you who like to think in terms of imperative algorithms, you should think of fold
as being a “for loop” over all elements of the list. That is, if you want to write
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currentState = init;

for ( x=list.begin(); x!= list.end(); x++ ) {

currentState = f (x, currentState);

}

return currentState;

You should just write foldl f init list. If you want to iterate in reverse, use foldr f init list.
Note that foldl, foldr, and map are all available directly in the top level environment (you can

just use their names and get the right function). filter is not, but is accessible as List.filter (more
on structures later).

7 Side-effects

With the exception of printing, the code we have seen so far has been purely functional—nothing
is ever modified, instead a new different thing is created. Applying map to a list does not modify
the list—it makes a new list with the mapped elements.

7.1 Type constructors: ref + array

There are, however, two type constructors which create side-effectable types: ref and array. The
following code shows an example of an int ref in action:

let val r = ref 0

val x = r

val () = r := 42

in

!x

end

Here, r and x both have type int ref. They both reference the same int (much like two pointers
to the same integer). r := 42 changes the values referenced by r to be 42. This is an expression
which has unit type (recall that unit is the name for a zero-element tuple and is the type for things
that produce no meaningful value, but are done for side-effect). The body of the let uses the !

operator to de-reference the ref x, getting the value it references, which is 42.
Arrays work somewhat similarly, and primarily use the following functions:

Array.sub : ’a array * int -> ’a

Array.update : ’a array * int * ’a -> unit

See http://www.standardml.org/Basis/array.html for more details on arrays if you need
them.

7.2 Applications

Note that we can do interesting things with refs and higher-order functions:

fun makeCounter initVal =

let val r = ref initVal
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in

fn () => let val ans = !r

val () = r := ans + 1

in

ans

end

end

This function has type int -> unit -> int. You give it an initial value, and it returns a
function which will count up every time you apply it to unit. This code will result in a being 3, b
being 4, and c being 5.

val f = makeCounter 3

val a = f ()

val b = f ()

val c = f ()

As extra random bonus trivia, note that you can emulate OOP with refs and records:

type pt = { getX : unit -> int,

getY : unit -> int,

setX : int -> unit,

setY : int -> unit}

fun makePoint (x,y) =

let val xr = ref x

val yr = ref y

in

{getX = fn () => !xr,

getY = fn () => !yr,

setX = fn x’ => xr := x’,

setY = fn y’ => yr := y’}

end

Here, makePoint acts as a constructor (in the OOP sense) for “objects” of type pt, which
encapsulate the data and the functions that act on them. We actually hide the data here, and
nobody can directly access the refs.

7.3 The value restriction

One caveat of side-effects is that, if done naively, they make polymorphic types unsafe (see
http://mlton.org/ValueRestriction for an example). The important consequence of this is
that ML has a rule called the “value restriction.” This may come up sometimes when you use
polymorphic functions, especially partial applications of fold (that is, you give fold a few arguments
to get the function you want—which is sort of “waiting” for the rest of the arguments to fold”).
For example, consider the following use of foldl to reverse a list:

val reverse = foldl (op ::) []
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Evaluating this results in

stdIn:109.5-109.31 Warning: type vars not generalized because of

value restriction are instantiated to dummy types (X1,X2,...)

val reverse = fn : ?.X1 list -> ?.X1 list

Attempting to apply the reverse function to any list will result in a type error—to be safe (ensure
nobody did anything bad with refs), SML had to make it not polymorphic, and gave it a monomor-
phic type on “dummy types”—types that aren’t meaningful. This made the reverse function, as
written here, pretty useless since we can’t apply it to much.

However, all is not lost. If we wanted a monomorphic function, we could simply specify the
type:

val reverse: int list -> int list = foldl (op ::) []

but this is not the best option—we can actually get a polymorphic funciton this way, we just
have to write it a bit differently:

fun reverse x = foldl (op ::) [] x

This seems almost exactly the same (and works the same) as the original (potentially problem-
atic) solution—the differences are subtle, and why it guarantees safety is too complex to go into
here. The important thing to know is what to do if you get that sort of error message.

8 Practice Excercises 2

Before proceeding, perform the following coding excercises.

1. Using the following datatype declaration:

datatype expr =

NUM of int

| PLUS of expr * expr

| MINUS of expr * expr

| TIMES of expr * expr

| DIV of expr * expr

| F of expr list * (int list -> int)

Write the function eval: expr -> int which evaluates an expression to a value. NUM(x)
simply evaluates to x. PLUS, MINUS, TIMES, and DIV should recursively evaluate their
sub-expressions, then perform the appropriate math operations. F exprs should recursively
evaluate all the exprs in their expr list, then apply their function to the resulting integers.
(Hint: You should use map in your F case.)

2. Use fold to write the flatten: ’a list list -> ’a list function. The flatten function
merges together a list of lists into a single list with all of the elements in their original
order. For example: flatten [[1,2,3], [4], [5,6], [], [7]] should result in the list
[1,2,3,4,5,6,7].
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3. Use fold to implement your own version of map.

4. Use fold to implement your own version of filter.

5. Use fold to write the function count: (’a -> bool) -> ’a list -> int which returns a
count of how many items in the list the ’a -> bool function returned true for.

6. Use fold to write mapPartial: (’a -> ’b option) -> ’a list -> ’b list this function
is like a combination of map and filter. For each item of the input list, if the function applied
to that item returns SOME(b), then b appears in the output list. If NONE is returned, that
item is dropped from the output list.

9 The module system

So far, our SML discussion has covered programming in the small—writing individual functions, or
a few functions to do relatively minor tasks. SML has a rich module system to support programming
in the large. There are three pieces to this module system—structures, signatures, and functors—
which we will discuss over the next three sections.

9.1 Structures

An SML structure forms a module, grouping together related types, constants, and functions into
a coherent package.

Consider the following example of the MyBST structure, which defines a datatype and two
operations (add and find) for binary search trees:

structure MyBST =

struct

datatype ’a bst =

NODE of int * ’a * ’a bst * ’a bst

| NIL

fun add (k,v,NIL) = NODE(k,v,NIL, NIL)

| add (k,v,NODE (k’, v’, l,r)) = if (k < k’)

then NODE(k’, v’, add(k,v,l), r)

else NODE(k’, v’, l, add(k,v,r))

fun find (k,NIL) = NONE

| find (k,NODE(k’,v,l,r)) = case Int.compare (k,k’) of

EQUAL => SOME v

| LESS => find(k,l)

| GREATER => find(k,r)

end

Most of the code in this example should be familar from what we have seen so far: a poly-
morphic datatype declaration, two functions written with pattern matches, an if expression, a case
expression, and a few function calls. There are, however, two new things. The first is the declara-
tion of the structure itself. structure MyBST = tells SML that we are declaring a structure (called
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MyBST). After this we can either follow it with a new structure definition (struct .... end) or
with the name of an existing structure.

The other new construct that we see here is the use of the Int.compare function. This shows
how to use something found in another structure. Here, Int is the name of an existing structure
(its built into SML, and provides a variety of functions to do things to integers). The dot gives us
access to something inside the Int structure, namely the compare function. This feature is useful, as
there may be many compare functions in a large program. In fact, just in the built-in SML library,
there are several compare functions, for example: String.compare, Int.compare, Real.compare.

As we mentioned above, you can declare a structure to be equal to an existing structure. This is
particularly useful to give a structure a shorter name if you frequently reference it. For example, if
you are writing another structure that uses MyBST frequently, you might say structure B=MyBST

at the start of that module. You can then say B.find and B.add to save typing.
You can also open a module—e.g., open MyBST, which lets you reference the contents of the

module without prefixing it with the name (i.e. just find instead of MyBST.find). While this also
saves typing, it can lead to less readable code: if you open many structures, someone reading the
code many have to search through all of them to find where a function is declared.

9.2 Signatures

Our binary search tree example from the previous section is a specific case of a more general
construct: the Map abstract data type (where we look up values given a key). We could also envi-
sion other implementations of the Map abstract data type: lists, balanced BSTs, Hashtables,etc...
Signatures provide a way to define an interface without defining an implementation. They force
structures to conform to that interface, and force users of that structure to only use those types and
values (including functions) specified in the interface. This is particularly useful for code maintain-
ablilty, as you are always guaranteed you can replace change out one implementation of a structure
for another conforming to the same signature with no other code changes.

Consider the following example signature:

signature MyMap =

sig

type ’a map

val empty: ’a map

val add: int * ’a * ’a map -> ’a map

val find: int * ’a map -> ’a option

end

This signature specifies that a structure conforming to the MyMap signature must contain one
type and three values (2 of which are functions because they have an arrow type). However, it says
nothing about how these functions are implemented.

With a few slight modifications, we can specify that our MyBST structure conforms to the
MyMap signature (called ascribing the signature to the structure):

structure MyBST : MyMap =

struct

datatype ’a map =

NODE of int * ’a * ’a map * ’a map
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| NIL

val empty = NIL

fun add (k,v,NIL) = NODE(k,v,NIL, NIL)

| add (k,v,NODE (k’, v’, l,r)) = if (k < k’)

then NODE(k’, v’, add(k,v,l), r)

else NODE(k’, v’, l, add(k,v,r))

fun find (k,NIL) = NONE

| find (k,NODE(k’,v,l,r)) = case Int.compare(k,k’) of

EQUAL => SOME v

| LESS => find(k,l)

| GREATER => find(k,r)

end

Note that we have made three changes here:

1. The declaration of MyBST now has : MyMap, saying that it conforms to the MyMap signa-
ture

2. We have changed the type name from bst to map, since the signature requires a type called
map (we could also keep the datatype declaration the same, and then add this declaration
type ’a map = ’a bst).

3. We have added the declaration val empty = NIL so that we have the empty value required
by the signature.

The compiler will check that the MyBST structure has all the names required by the signature,
and that they all have the proper types. The structure may define additional names (types or
values), but these effectively become private when the signature is ascribed.

There are actually two types of ascription. The one we just saw (using the : syntax) is called
transparent. The other type (using :> instead of :) is called opaque. The difference between the
two is whether or not the actual types used in the structure are externally visible. Both types of
ascription hide all names that are not declared in the signature.

The difference between the two types of ascription are hard to see with the MyBST example,
so we will consider the following different implementation of the MyMap signature:

structure MyLstMap : MyMap =

struct

type ’a map = (int * ’a) list

val empty = []

fun add(k,v,lst) = (k,v)::lst

fun find(k,[]) = NONE

| find(k,(k’,v)::l) = if (k=k’)

then SOME v

else find (k,l)

end

This implementation uses lists. With transparent ascription, however, our information hiding is
incomplete: the fact that ’a map is a (int * ’a) list is externally visible. This fact allows an external
module to write something that “cheats” on the interface to the module like this:
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(1,2)::MyLstMap.empty : int MyLstMap.map

If we do such a thing, then we cannot seamlessly swap out one map implementation for another. If
we use opaque ascription (shown below), then the fact that ’a map is a list is not externally visible,
and the information is completely hidden.

structure MyLstMap :> MyMap =

struct

type ’a map = (int * ’a) list

val empty = []

fun add(k,v,lst) = (k,v)::lst

fun find(k,[]) = NONE

| find(k,(k’,v)::l) = if (k=k’)

then SOME v

else find (k,l)

end

It is generally best to use opaque ascription, though there are times when transparent is appro-
priate.

9.3 Built-in Structures

SML comes with a wide set of built-in structures called the “Basis Library.” You can find docu-
mentation on them here:

http://www.standardml.org/Basis/overview.html

Ones of particular note are List (various useful things to do on/with lists), ListPair (things
to do to/with pairs of lists), Int (functions to work with ints), String (for string opera-
tions/manipulations), Array (as mentioned above: mutable arrays), and Vector (like arrays, but
immutable—not like Java Vectors: they do not resize).

You can also find things like TextIO (reading/write text to/from files), OS (and its sub-
structures—for a wide variety of system calls), and many more things.

9.4 Using the Compilation Manager

SML/NJ comes with a utility that is similar to make, but customize for SML. This utilitiy is called
the ”Compilation Manager,” or CM. When working on any program of significant size, use of the
compilation manager is highly recommended.

Using the compilation manager most efficiently goes hand-in-hand with organizing your source
code properly. Place each structure definition in its own .sml file (do the same for each functor
definition—discussed in the next section). Place each signature definition in its own .sig file. Then
write a .cm file for your program. This .cm file should start with the line Group is, followed by a
blank line. It should then list all of the source files (one per line). Order does not matter. It should
also list $/basis.cm to include the basis library. Frequently, you will also want $/smlnj-lib.cm

for the utility library (which contains a lot of algorithms and data structures).
An example .cm file might be

Group is
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$/basis.cm

$/smlnj-lib.cm

foo.sig

foo.sml

bar.sig

bar.sml

main.sml

Once you have your .cm file created, you can compile your program, and (if compilation was suc-
cessful) load the name bindings it introduces into your current repl with CM.make "filename.cm"

where filename.cm is replaced with whatever you named the file. If the compilation was successful
the last lines of output (before the new REPL prompt) should be

[New bindings added.]

val it = true : bool

If CM.make returns false, it indicates that a compilation error occured, and you should be able to
find that error in the output.

If you are using ml-lex, you should be able to just list .lex files in your .cm file. CM will know
to run ml-lex on these to get sml source, and then compile the resulting SML file. If you are using
ml-yacc, you can list .grm files in your .cm file, but also need to list $/ml-yacc-lib.cm to include
the ml-yacc library. CM will know to run ml-yacc on the .grm file to generate sml, and compile
the resulting file.

9.5 Functors

Our previous Map design is a good step in the right direction: we make good use of abstraction
(signatures provide an interface that hides the implementation), and our Map is polymorphic in
the values it stores. However, our Map has one major downside: the keys must be ints.

We can fix this, but we need some way to parameterize the data structure over the comparison
function. This sounds simple enough, as we have already learned that we can pass functions to
other functions.

A straw-man approach would be to use this interface:

signature MyMap =

sig

type (’a,’b) map

val empty: (’a,’b) map

val add: (’b * ’b -> order) -> ’b * ’a * (’a,’b) map -> (’a,’b) map

val find: (’b * ’b -> order) -> ’b * (’a,’b) map -> ’a option

end

Note that this signature makes use of the built-in type order which is defined as:

datatype order =

GREATER

| EQUAL

| LESS
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This interface works, but exhibits a design flaw that can come back to bite the programmer.
A programming mistake could cause the programmer to add with one ordering function and find

with another, causing mysterious errors where something should be in the map, but is not found.
A better option might be:

signature MyMap =

sig

type (’a,’b) map

val empty: (’b * ’b -> order) -> (’a,’b) map

val add: ’b * ’a * (’a,’b) map -> (’a,’b) map

val find: ’b * (’a,’b) map -> ’a option

end

In this interface, we provide the ordering function when an empty map is created, and encap-
sulate that ordering function in the map data structure (so the map type might be a pair of a
function and a tree). This approach solves the main problem in option 1—a programmer can no
longer erroneously try to find with a different function than was used to add. However, we can
still do better.

Suppose we wanted to add a merge function to our interface:

val merge: (’a,’b) map * (’a, ’b) map -> (’a, ’b) map

When we add this function, we would like implementations to be able to support their inherent
orderings for an efficient merge operation where possible. In the setup we have, this might result
in something like

fun merge (m1, m2) =

if (sameOrdering(m1,m2))

then fastMerge (m1,m2)

else slowMerge (m1,m2)

However, we have a problem for almost any practical implementation: functions cannot be com-
pared for equality, so we cannot check if the orderings are the same! One can imagine a variety
of kludges, but functors provide an elegant solution: we parameterize the structure as a whole
over another structure (containing types and functions). Instantiating the functor with a par-
ticular structure results in a structure which the type system recognizes as distinct from other
instantiations of the same functor.

To see this in action, let us first look at the built-in signature ORD_KEY:

signature ORD_KEY=

sig

type ord_key

val compare : (ord_key * ord_key) -> order

end

This does not seem terribly exciting—its just a type and a comparison function over that type—
however, this is exactly what we need to parameterize our MyBST Map implementation over. To
do this, let us first revisit the MyMap signature:
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signature MyMap =

sig

type key

type ’a map

val empty: ’a map

val add: key * ’a * ’a map -> ’a map

val find: key * ’a map -> ’a option

end

Now our signature says that Maps will define two types: (1) the type of key they use (2) the
type for a polymorphic map (which has the key fixed, but can be instantiated for any data type).
The signature then provides similar values/functions as the original—it just uses key as the type
of its key rather than int.

Now, we can make a generic BST map functor which is parameterized over a structure (K)
conforming to the ORD_KEY signature. The resulting structure (which is a BST-based map for a
particular key type) will conform to MyMap:

functor MyBST (K: ORD_KEY) : MyMap =

struct

type key = K.ord_key

datatype ’a map =

NODE of key * ’a * ’a map * ’a map

| NIL

val empty = NIL

fun add (k,v,NIL) = NODE(k,v,NIL, NIL)

| add (k,v,NODE (k’, v’, l,r)) = case K.compare(k,k’) of

EQUAL => NODE(k,v,l,r)

| LESS => NODE(k’, v’, add(k,v,l), r)

| GREATER => NODE(k’, v’, l, add(k,v,r))

fun find (k,NIL) = NONE

| find (k,NODE(k’,v,l,r)) = case K.compare(k,k’) of

EQUAL => SOME v

| LESS => find(k,l)

| GREATER => find(k,r)

end

Once we have this, we can do things like

structure IntBST = MyBST(struct type ord_key = int

val compare = Int.compare

end)

structure StrBST = MyBST(struct type ord_key = string

val compare = String.compare

end)
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A few things to note about this example: (1) IntBST.map and StrBST.map are two distinct
type constructors. The type bool IntBST.map is completely different from bool StrBST.map. In
fact, if we do this:

structure IntBST = MyBST(struct type ord_key = int

val compare = Int.compare

end)

structure IntBST2 = MyBST(struct type ord_key = int

val compare = Int.compare

end)

structure IntBST3 = IntBST

The type constructors IntBST.map and IntBST2.map are distinct. Note that IntBST3.map is the
same as IntBST.map, because IntBST3 is exactly the same structure as IntBST.

If you were paying very careful attention, you will notice that I used transparent ascription of
the MyMap signature rather than opaque (even though I said opaque is generally better).

functor MyBST (K: ORD_KEY) : MyMap =

If we change this to opaque ascription:

functor MyBST (K: ORD_KEY) :> MyMap =

but leave everything else the same, then this works great until we actually try to use it:

- IntBST.add(1,"hello",IntBST.empty);

stdIn:42.1-42.35 Error: operator and operand don’t agree [literal]

operator domain: IntBST.key * ’Z * ’Z IntBST.map

operand: int * string * ’Y IntBST.map

in expression:

IntBST.add (1,"hello",IntBST.empty)

The problem here is that opaque ascription has not only hidden the information we want (the
innerworkings of our tree data type), but has also hidden information we need: that key is int!

More generally, what we want our functor to reveal (as part of its interface) is that its key type
will always be the same as K’s ord_key type—and that its ok for the outside world to know this.
We accomplish this with the where keyword:

functor MyBST (K: ORD_KEY) :> MyMap

where type key = K.ord_key =

struct

...

end

with this definition of the MyBST functor (as well as the definition of the IntBST structure above),
we get an excellent design of our data structure: the BST implemenation of the map can be
instantiated for any type we can give an ordering function for. The deatils of the implementation
are neatly hidden behind the abstraction boundary enforced by opaque ascription, and we can still
write any other MyMap implementation we want (Note that these do not have to be functors at
all: we can make our original int list-based map work by just adding type key=int to it).
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Two more notes about writing functors:
First, if you want a functor to be paramaterized over multiple structures (that is, “take multiple

arguments”) you can, but you do it in a way that looks like curried arguments:

functor F (X: Sig1) (Y: Sig2) =

struct

...

end

Second, you can use where in the functor’s argument declaration to contrain the signature a bit
more. For example, in the practice excercises you will do shortly, you will want to have a functor
parameterized over a structure conforming to the ORD_MAP signature, but will want to contrain the
key type to strings:

functor F(M: ORD_MAP where type Key.ord_key = string)

Note that Key is a sub-structore of ORD_MAP, so you are requiring that M.Key.ord_key be a string.

9.6 Built in Maps and Sets

SML’s utility library provides ORD_MAP and ORD_SET signatures, as well as some efficient implemen-
tations of them.

You can read about the interfaces here:

http://www.smlnj.org/doc/smlnj-lib/Manual/ord-map.html#ORD_MAP:SIG:SPEC

http://www.smlnj.org/doc/smlnj-lib/Manual/ord-set.html#ORD_SET:SIG:SPEC

The utility library provides three implementations of each of these BinaryMapFn/BinarySetFn,
SplayMapFn/SplaySetFn, and ListMapFn/ListSetFn.

10 Practice Excercises 3

For this excercise, you will be filling in the contents of the following functor:

functor F(M: ORD_MAP where type Key.ord_key = string)

(S:ORD_SET where type Key.ord_key = string) :>

sig

val proc: string list -> S.set M.map

end

=

struct

...

end

The proc function takes a list of strings (which are file names), and builds a map of sets. The
map maps strings (i.e., words) to the set of files names in which they appear. Words are separated
by spaces (or newlines). For example, if you were passed ["a.txt","b.txt"] and a.txt had this
contents:
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Hello World

test

and b.txt had this contents:

a test

input

Your function should return a map that maps “Hello” and “World” to the set {a.txt}, “test” to
the set {a.txt, b.txt} and “a” and “input” to the set {b.txt}.

Checking out the String, and TextIO structures are highly recommended for implementing this
function.

You should then instantiate your functor on at least one structure instantiated from one of the
built-in ORD_MAP and ORD_SET functors and test it out.

11 Common Mistakes

Here are a few common mistakes for new SML programers:

1. and vs andalso: and is for mutually recursive declarations. andalso is for the boolean and
operation.

2. if then else is an expression, not a statement. The else is required, and both the then and the
else must have the same type. If you want to do something for side-effect in one case, but
not do something in the other case, use () as the body of the else.

3. dot is for accessing things within structures—these are not objects, they are modules. These
modules separate namespaces (that is, String.compare and Int.compare are two different
compares), but there is no encapsulation here. You do not do value.function.

4. fun f a:t vs fun f (a:t). The first of these says that f returns type t. The second say
that the argument to f is of type t.
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