
As with Chapter 1, we are going to lay out the learning objectives for this chapter, and split
them into what you should get on the first reading vs the second reading.

1 First Reading: Understand Key Ideas

On your first reading, the goal is to get the big ideas, and build the mental scaffolding in which to
hold the details on your second reading—the learning objectives for your first reading are generally
Remember and Understand objectives. If you are missing a few details (but not completely
lost), it is ok to move ahead, and come back to them the next time through—you might ask
questions on the course forums too! Note you should sleep at least one night between the
first and second reading to give your brain time to process the information.

• Hardware Representation

– Explain the “everything is a number” principle and why it is important.

– Define bit

– Explain what a type specifies about the data it describes.

– Define binary number.

– Explain the value of each digit of a binary number.

– Explain why computers use binary numbers.

– Define abstraction.

– Explain why abstraction is important.

– Define hexadecimal number.

– Explain why hexadecimal numbers are useful.

– Explain how to interpret a hexidecimal number.

• Basic Datatypes

– Define compiler.

– State the number of bits in a char.

– Explain what single quotation marks (as in ’A’) mean.

– Explain why you do NOT need to know the specific numeric values of characters in
almost all situations.

– Define unsigned (int).

– Define short and long qualifiers on int.

– Define floating point number.

– Define binary point.

– Explain how floating point numbers are represented.

– Explain the difference between the float and double types.

– Explain the pitfalls of comparing floating point numbers for equality.

1



• Printing Redux

– Define format specifier

– Lookup format specifiers in the man pages as needed.

∗ Note: you will use %d, %s, and maybe %c fairly often, and soon be able to use them
without looking things up. Please don’t try to memorize all the format specifiers.

• Expressions Have Types

– Know that expressions have types.

– State the type of literal expressions.

– State how to find the type of a variable used in an expression.

– Explain how to find the type of an expression involving binary operators.

– State how to find the type of a function call used in an expression.

– Explain why the operands of a binary operator need to be converted to the same type
if they are not already.

– Define type conversion.

– Explain what the compiler must do to perform a type conversion.

– Define sign extend.

– Define zero extend.

– Define truncate (in the context of type conversions).

– Explain which type conversion methods are appropriate under what circumstances.

– Define casting (in the context of types).

– Explain the difference between type promotion and casting.

– Explain why you should be wary of casting.

– Explain two circumstances under which you might need to cast.

– Explain why dividing two integers and then assigning to a float gives the wrong result
in many circumstances.

– Define overflow and underflow.

– Explain why it is incorrect to say that a value overflow or underflowed.

– Recognize that in some cases overflow/underflow might be benign.

– Explain why it is difficult and/or cumbersome to check for overflow everywhere.

– Explain how programmers might guard against overflow.

• “Non-Numbers”

– List some important kinds of data that do not naturally seem like numbers.

– Explain why any type of data we want to use must be encoded as numbers.

– Define string

– Define null terminator and state how to write it down in C code.

2



– Explain how a string is represented in C (note: this learning objective will be revisted
in later chapters, for now a high-level explaination from the concepts in this chapter is
sufficient).

– Define RGB.

– Define pixel.

– Explain (at a high level) how images are encoded digitially.

– Explain (at a high level) how sound is encoded digitially.

– Explain (at a high level) how videos are encoded digitially.

– Explain why compression is important for video encoding.

• Complex, Custom Data Types

– Define struct

– State the syntax rules at least one (your choice) of the ways to declare a struct.

– Explain the dot (.) operator.

– Explain what typedef does and why it is useful.

– State the syntax of typedef.

– Define enumerated type.

– State the syntax for declaring and using enumerated types.

– Explain why enumerated types are useful (hint: your answer should reference abstrac-
tion).

2 Second Reading

As always, we strongly recommend you sleep between your first and second reading. The second
reading is where you want to focus on the higher-level learning objectives, which build on the lower-
level learning objectives you worked on in the first reading. Sleeping gives your brain a chance to
process the information from the first reading.

• Hardware Representation

– Convert positive binary numbers to decimal numbers.

– Convert positive decimal numbers to binary numbers.

– Convert hexadecimal numbers to binary numbers.

– Convert binary numbers to hexadecimal numbers.

– Note: converting decimal to/from hex is just a combination of the above skills.

– Separate interface from implementation.

∗ Note: you are starting on this learning objective here, but will practice/improve it
over many years.

• Basic Datatypes

3



– Select the appropriate built-in datatype to store data for algorithms you are writing.

• Printing Redux

– Evaluate code which prints data with various format specifiers.

– Note: we don’t expect you to memorize the format specifiers. But you should quickly
become familiar with the ones you use often, and you should be able to evaluate code
with other specifiers given appropriate documentation (e.g., the man pages) of what
those specifiers do.

• Expressions Have Types

– Determine the type of a (potentially complicated) C expression.

– Determine when a C expression has a type error.

– Recommend ways to change a C expression to fix a type error.

– Assess when the types involved in an expression will cause it to evaluate to an undesired
value and recommend how to change the expresion to evaluate properly.

– Note: the above two learning objectives might involves recommending changes like stor-
ing data in different variable types, casting, storing intermediate results in a variable
of an appropriate type, changing the return type of a function, or a variety of other
strategies.

– Assess if overflow/underflow are potential problems in a piece of code, and if so, rec-
ommend changes to the code to prevent the problem.

• “Non-Numbers”

– Construct a representation of non-numeric data with numbers.

∗ Note: we expect you to be starting on this LO now, not to totally master it. You
should master it over the course of the semester.

• Complex, Custom Data Types

– Evaluate C code with structs and the dot operator.

– Assess when structs are appropriate to represent data.

– Construct struct declarations to represent appropriate data, and write code to use
those structs.

∗ Note: At present, we expect you to just be able to do the basic mechanics of this
LO. Converting algorithms to code is the subject of Chapter 4.

– Evaluate C code with enums.

– Assess when enums are appropriate to represent data.

– Construct enum declarations to represent appropriate data, and write code to use
those enums.

∗ Note: At present, we expect you to just be able to do the basic mechanics of this
LO. Converting algorithms to code is the subject of Chapter 4.

4



3 Key Learning Objectives

Here are the most key learning objectives from this chapter. Note that most of these will require
practice (with upcoming assignments) and you won’t just master them from reading:

• Execute code by hand which includes the new ideas in this chapter (types beyond int,
printing in various formats, structs, dot operator, enums).

• Determine the type of an expression (or that there is a type error in it), assess when types
cause unintended results, and recommend ways to fix type-related problems with your code.

• Choose the right datatype for your programming problem (which includes assessing con-
cerns about overflow/underflow, the appropriateness of built-in types, the appropriateness of
structs, the appropriateness of enums, and good abstraction).

• Construct the appropriate type to represent data whenever a built-in type is not appropriate.

• Write code which uses the various types you learned about in this chapter.

– Note: At present, we expect you to just be able to do the basic mechanics of this LO.
Converting algorithms to code is the subject of Chapter 4.

5


