
This document lays out the learning objectives for Chapter 1. Note that you generally will not
meet all learning objectives on the first reading. Instead, more sophisticated learning objectives
will require a second reading to fully understand. This document can also serve as an excellent
outline for your notes on this chapter.

For each learning objective, the key verb (what you should be able to do) is marked/colored
based on the level of Bloom’s taxonomy at which that objective lies. For example, if you should be
able to define at term, that is at the “remember” level. On the other hand if you should be able
to devise an algorithm that is at the “create” level.

In particular, you will see learning objectives at the 6 levels of Bloom’s taxonomy:

1. Remember

2. Undertand

3. Apply

4. Analyze

5. Evaluate

6. Create

Note that the gray backgrounds for some of these do not have any special meaning—those colors
just do not show up well on a white background (and other colors don’t show up well on a gray
background).

1 First Reading: Understand Key Ideas

On your first reading, the goal is to get the big ideas, and build the mental scaffolding in which to
hold the details on your second reading—the learning objectives for your first reading are generally
Remember and Understand objectives. If you are missing a few details (but not completely
lost), it is ok to move ahead, and come back to them the next time through—you might ask
questions on the course forums too! Note you should sleep at least one night between the
first and second reading to give your brain time to process the information.

• What Is Programming?

– Define metacognition.

– Explain metacognition’s relation to programming.

– Explain why planning before programming is important.

– Define algorithm.

– Explain the difference between a problem and a class of problems.

– Define parameter.

• How to Write a Program

1



– Explain the high-level process for writing a program.

– Explain the difference between testing and debugging.

– State the amount of testing needed to ensure correct code.

• Algorithms

– Explain how you know if an algorithm written in English is done well.

– State the only type of information a computer can work with.

– (Note: work through the example on the second reading)

– Explain why some courses have an activity on writing instructions to make a PB&J
sandwich.

– List what parts of algorithm creation this sandwhich activity does not cover and explain
those shortcomings.

– Name one mechanism that guards against certain kinds of nonsense inputs and explain
what types of nonsense inputs it protects against.

– Define error cases.

– Explain why starting by trying to write code is the wrong approach to designing an
algorith.

• Step 1: Work an Example Yourself

– Name the first step to write an algorithm.

– Explain why you might need to do this step multiple times.

– Explain what problem might arise for simple cases.

– Define ill-specified problem.

– Explain what you could do if you an ill-specified problem.

– Define domain knowledge.

– Explain what you could do if you lack domain knowledge.

• Step 2: Write Down What You Just Did

– Name the second step to write an algorithm.

– Explain why you might need to do this step multiple times.

– Explain what the difficult part of Step 2 is.

– Relate this step to the earlier PB&J sandwich example.

• Step 3: Generalize Your Steps

2



– Name the third step to write an algorithm.

– List the two primary activities in this step:

∗
∗

– Explain stratgies for if I get stuck on Step 3.

• Step 4: Test Your Algorithm

– Name Step 4 of creating an algorithm.

– Explain why you want to use different values for the parameters (from the ones I used
in Step 1).

– List two common mistakes in Step 3 that we might detect in Step 4:

∗
∗

– Explain how you might fix a problem in your algoritm if you find one in Step 4.

– Explainy why you only need minimal “pencil and paper” testing.

• Some Examples

– Explain why it is important to understand there are many correct algorithms for a
problem.

– Name some real world problems where finding the closest point is useful.

– Our core learning objectives are around developing algorithms, such as the ones in these
examples—we will revisit those on the second reading. For now, we recommend writing
the following points in your notes for each algorithm:

∗ What were your key “takeaway” points from the example (what did you learn)?

∗ What things were you unclear about from the example?

∗ What key strategies for Step 3 (Generalize) were used in the example?

• Next Steps

– State why novice programmers may try to skip a step-by-step approach.

– Explain the disadvantages of skipping steps in The Seven Steps.

– Explain what will change about your programming process as you get more experience.

– Explain why reading code is an important skill, both in learning, and in industry.

2 Second Reading: Work Through Examples

On your second reading, read more carefully, ensuring you have a good understanding of the
material. When you encounter an example, work the example in your notes. If you can’t work it,
that shows gaps in your understanding from your first reading—fill them in, and retry it. If there
are things you don’t understand in your second reading, ask questions about them! Note that the
learning objectives for this reading are higher level (Apply, Analyze, Evaluate, and Create).

3



• Execute by hand and algorithm written in English. Note that we have reproduced the
algorithm from 1.2 below for you and provided an outline for you to do it in your notes.

Given a non-negative integer N:

1: Make a variable called x, and set it equal to (N+2).

2: Count from 0 to N (include both ends),

and for each number (call it i) that you count:

3: Write down the value of (x * i).

4: Update x to be equal to (x + i * N).

5: When you finish counting, write down the value of x.

When I execute it by hand for N=2, I do the following steps:

Before line:
N=

Before line:
N=
x=

Before line:
N=
x=
i=

On line 3, I write this output:

Before line:
N=
x=
i=

After line 4, before I count the next number:
N=
x=
i=

Now, I count my next number for i, which is

Before line:
N=
x=
i=

On line 3, I write this output:

Before line:
N=
x=

4



i=

After line 4, before I count the next number:
N=
x=
i=

Now, I count my next number for i, which is

Before line:
N=
x=
i=

On line 3, I write this output:

Before line:
N=
x=
i=

After line 4, before I count the next number: N=
x=
i=

The next number I count would be 3, but I am only counting to 2, so I am done counting, so
now I go to Before line:
N=
x=

On line 5, I write this output:

Now, I am done.

• Compare and constrast steps in an algorithm to find repetition.

• Transform steps in an algorithm to make repetition clear. Note: the step from the algorithm
in 1.3 where we transform

Multiply x by 3.

You get 9.

Multiply x by 9.

You get 27.

Multiply x by 27.

You get 81.

81 is your answer.

into

5



Start with n = 3.

n = Multiply x by n.

n = Multiply x by n.

n = Multiply x by n.

n is your answer.

is a great example of what you should be able to do for these two learning objectives:

• Transform repetitive steps into a couting patter. Note: the step where we transform the
above algorithm into the one below is a great example of this skill

Start with n = 3.

Count up from 1 to y-1 (inclusive), and for each number you count,

n = Multiply x by n.

n is your answer.

• Determine what values in your algorithm depend on parameters, and develop a formula
which expresses those relationships. Note: the step where we transform the above algorithm
into the one below is a great example of this skill.

Start with n = x.

Count up from 1 to y-1 (inclusive), and for each number you count,

n = Multiply x by n.

n is your answer.

3 Practicing with Key Learning Objectives

The following four learning objectives are the most key to this chapter.

• Compare and constrast steps in an algorithm to find repetition.

• Transform steps in an algorithm to make repetition clear.

• Transform repetitive steps into a couting patter.

• Determine what values in your algorithm depend on parameters, and develop a formula
which expresses those relationships.

We strongly recommend that on (or after) your second reading, you work through the examples in
1.7 to practice these skills. We give you a rough outline for what you might put in your notes as
you practice on these.

• Working the example in 1.7.1:

– Doing Step 1 for N=5:

– Doing Step 2 for N=5:

– Doing Step 3:

6



∗ How many numbers are there for each value of N?

∗ What is the starting number for each value of N?

∗ What is the formula for the ith number for each value of N?

∗ My generalized algorithm is:

– Doing Step 4 to test my algorithm with N=3:

• Working the example in 1.7.2:

– Doing Step 1 for N=2:

– Doing Step 2 for N=2:

– Doing Step 3:

∗ How many columns do you count across?

∗ What is the starting y-coordinate in each column?

∗ How many squares are in the ith column?

∗ How do you determine if a square is blue or red?

· Does this formula depend on N?

∗ My generalized algorithm is:

– Doing Step 4 to test my algorithm with N=4:

7



• Working the example in 1.7.3:

– Doing Step 1 for x=2, y=1, width=3, height=4:

– Doing Step 2 for x=2, y=1, width=3, height=4:

– Doing Step 3:

∗ How many horizontal lines did I draw?

∗ How long was each horizontal line?

∗ What is the starting x-coordinate of the ith line?

∗ What is the starting y-coordinate of the ith line?

∗ My generalized algorithm is:

8



– I have a sub-problem of “Draw a horizontal line of length L starting at (X,Y)”, Doing
Step 1 of this sub-problem for x=2, y=1, length=3:

– Doing Step 2 of this sub-problem for x=2, y=1, length=3:

– Doing Step 3 of this sub-problem:

∗ How many squares did I draw?

∗ What was that x-coordinate of the ith square?

∗ What was the y-coordinate of the ith square?

∗ My generalized algorithm for this sub-problem is:

– Doing Step 4 for this sub-problem for x=3, y=5, length=2

– Doing Step 4 for the whole problem with x=4, y=3, width=2, height=5

9



• Working the example in 1.7.4:

– Doing Step 1 for S={(1, 3)(5, 2), (2,−2), (−3,−4)} and P=(1,−1)

– Doing Step 2 for S={(1, 3)(5, 2), (2,−2), (−3,−4)} and P=(1,−1)

– Doing Step 3:

∗ (we will let you think through what questions to ask to break things down this time)

∗ My generalized algorithm is:

– Doing Step 4 for S={(−3, 13), (3, 9), (6, 1), (1, 6)} and P=(3, 5)

10


