
As with Chapter 1, we are going to lay out the learning objectives for this chapter, and split
them into what you should get on the first reading vs the second reading.

Note that this guide covers Appendecies A (quite short, and you probably need to read it only
once), B.1–B.5, B.12, C.1–C.7, and D.4 together. This is the material that you need to get started
on the Mastery Learning Platform.

The material in B.6 through B.11 is a bit more advanced use of the command shell and is
not as critical right now. You will, however, want to master these skills eventually, as they will
make a variety of tasks much simpler at the command line. Likewise, C.8 deals with programming
commands, so we are going to wait until you are ready to write code before covering that. C.9 and
C.10 cover more advanced Emacs features, which you will want to master later. (C.11 and C.12
are optional reading if you are interested at some point).

Appendix B also has a vareity of small activities (in green boxes) to try out at the command
line. We recommend you do these on your second reading (not your first), and that in between
your first and second reading (in addition to sleeping at least one night), you login to the Linux
system for your class.

1 First Reading: Understand Key Ideas

On your first reading, the goal is to get the big ideas, and build the mental scaffolding in which to
hold the details on your second reading—the learning objectives for your first reading are generally
Remember and Understand objectives. If you are missing a few details (but not completely
lost), it is ok to move ahead, and come back to them the next time through—you might ask
questions on the course forums too! Note you should sleep at least one night between the
first and second reading to give your brain time to process the information.

• Expert Tools

– Explain the tradeoffs between expert tools and novice tools.

– Explain how your tool selection can send signals about your expertise or lack thereof.

– Note: you probably only need one reading of the Expert Tools Overview intro—it does
not have much complex material.

• In the Beginning Was the Command Line

– Define command line.

– Explain how to get to a command prompt on the type of computer you use.

∗ Note: since AoP was written, Windows has added “PowerShell” and “Windows
Subsystem for Linux”. These are both much better options than what previously
existed. WSL will give you an Ubuntu environment on your Windows computer.

– Explain why a commmand prompt might display the username and hostname.

• Getting Help

– Define command line arguments.

– Explain options.

1



– State what the man command does.

– List the basic commands to use to scroll and quit in man.

– Explain why there are sections for the man pages.

– State which section of the man pages is for Linux commands and which section is for
C library functions.

– Explain how you would find information about the man pages, including other section
numbers.

– State how to keyword search the man pages.

– Note: while AoP does not explicitly discuss this, one important thing to remember is that
man pages are authoritatative documentation—they were written by experts, reviewed
by experts, and the chances of incorrect information in them is quite low. By contrast,
you must be incredibly careful of whatever you find on the Internet—anyone can post
things on the Internet, and there are significant chances of them being wrong. In some
cases, what you find might be wrong in subtle and hard to tell ways. This warning
is especially applicable of StackOverflow, where it can be quite hard for a novice to
distinguish correct from incorrect information.

• Directories

– Define filesystem.

– Define directory.

– Explain when it is appropriate to use the term “folder” (and try to avoid it as much as
possible, in favor of “directory”).

– Define root directory.

– Explain the organization of a Unix filesystem.

– Define path.

– Define absolute path.

– Define current directory (also known as “current working directory”).

– Define relative path.

– Identify whether a path is absolute or relative.

– Define home directory.

– State what ~ is short for in Unix.

– Explain how to change the current directory of your command shell.

– Explain how to list the files in the current directory.

– Explain how to list the files in directories other than the current directory.

– Explain the significance of filenames starting with a dot (.) and how to make ls show
them.

– State what the special directory names . and .. signifiy.

– Explain how you would find more information about the ls command.

– State what the mkdir command does.

2



– State what the rmdir command does.

• Displaying Files

– Explain what the cat command does and how to use it.

– Define standard input.

– Explain what the more command does and how to use it.

– Explain what the less command does and how to use it.

– Explain what the head command does and how to use it.

– Explain what the tail command does and how to use it.

• Moving, Copying, and Deleting

– Explain what the mv command does and how to use it.

– Explain what the cp command does and how to use it.

– Explain what the rm command does and how to use it.

• Note: remember we are coming back to B.6–B.11 later. It will be helpful for you to practice
with the basics. For now, skip ahead to B.12.

• Remote Login: ssh

– Define ssh.

– Explain how to ssh into a server from your computer.

∗ Note: Windows Powershell and WSL support ssh directly from their command lines
like Mac and Linux. Also, since the writing of AoP, MobaXTerm has become a more
popular Windows alternative if not using Powershell or WSL.

– Explain why ssh is more secure than other login methods.

– Explain what scp is for and how to use it.

• Note: we are going to continue directly to Emacs (Appendix C) here. However, if you want
to end your first reading of Appendix B, come back to it, and practice before moving on, you
are more than welcome to. You may also continue on through Appendix C—it is a matter of
personal choice, and how you are feeling about the cognitive load of what you have read so
far.

• Emacs

– Define editor.

– Define In The Zone.

– Explain why/how use of the mouse inhibits effective programming.

– Define muscle memory.

– Define syntax highlighting.

– Explain why automatic indentation is useful.

3



– Explain why it is important for your editor to integrate with other programming tools.

– Explain why it is important to use only one editor for all programming languages you
work in and most other tasks you do.

• Emacs Vocabulary

– Define buffer.

– Define frame.

– Define window.

– Define point.

– Define mark.

– Define C-(key).

– Define M-(key).

– Define kill.

– Define yank.

– Define extended command.

– Define RET.

– Define Minibuffer.

– Define Major mode.

– Define Minor mode.

– Define Balanced Expression.

– Define Modeline.

• Running Emacs

– Explain how to run emacs

• Files and Buffers

– Explain how to perform basic editing in Emacs.

– Learn the keystrokes for the basic commands in Table C.1

∗ Note: we do not expect you to memorize them (memorization is bad). However, you
should become acquainted with them fairly quickly as you use them often. You want
your “fingers to learn” (muscle memory) these commands. We note this learning
objective here because we recommend you start making a quick reference sheet with
these (and other commands) to work from as you learn them. Try to learn a couple
Emacs commands per day.

– Interpret Emacs keystrokes, recognizing the difference between e.g., C-a C-b and
C-a b.

– Recognize that Emacs has TAB completion, and know that you should make use of it
frequently.

– Explain how to suspend Emacs, and restore it to the foreground.

4



– Learn the commands for cancelling and undoing (Table C.2)

∗ Again, don’t memorize: put them on your quick reference sheet and practice them
until they go into muscle memory.

– Explain how to redo (un-undo) in Emacs.

– Explain undo-in-region

∗ Note: this feature is INCREDIBLY useful.

• Cut, Copy, and Paste

– Explain how to copy/paste in Emacs.

– Learn the commands for copy/paste in tables C.3 and C.4.

∗ Again, don’t memorize: put them on your quick reference sheet and practice them
until they go into muscle memory.

– Explain the idea of the kill ring, and how to paste something other than the most recent
copy/cut

∗ Note: pasting from further back in the kill ring is another INCREDIBLY useful
feature.

• Multiple Buffers

– Explain why you might want to see multiple buffers at once.

– Learn the commands from C.5

∗ Again, don’t memorize: put them on your quick reference sheet and practice them
until they go into muscle memory.

• Search and Replace

– Define incremental search.

∗ Note: incremental search is also quite useful for lightweight fast cursor movement!

– Learn the commands from C.6

∗ Again, don’t memorize: put them on your quick reference sheet and practice them
until they go into muscle memory.

• Note: we will wait for C.8–C.10 until you are ready to start writing code. C.11 and C.12 are
optional if you are interested. Please go to D.4 (git) next.

• Revision Control: Git

– Define revision control.

– Explain why you want revision control in software projects (and in so many other
things!).

– Recognize that Git is a revision control system.

– State where you can go for a lot more in-depth information on Git.

– Explain what happens when you commit, and what benefits a commit provides.

5



– Explain why you do not want to just manually keep copies of your code.

– Define pull.

– Define push.

– Explain how revision control supports collaboration.

– Explain how/why there might be many “current” versions of a piece of code.

2 Second Reading: Work Through Examples

These Appendecies are a bit different from the main chapters, in that they provide a bunch of skills
to practice with. The higher level learning objectives are basically all perform (the right Linux,
Emacs, or Git command. Instead of listing these all out, we are going to give you an outline for
how to go back through and practice:

1. Make sure you have access to a UNIX command line (either by using a Mac or Linux computer,
by using WSL on Windows, or by SSHing to a Linux server). For anyone reading this for
ECE 551, MEMS 555, or GameDev 510, you will have access to a Linux server for class, so
we recommend working there. See B.12 as well as information from your specific course for
how to login (and ask for help if you need it!)

2. Re-read Appendix B.1–B.5 and try the activities in the green boxes.

3. Do MLP assignment 000_submit which will help you practice some basic Emacs and Git use.

4. Open a file in Emacs, and re-read Appendix C.1–C.7. Try out the various commands as you
read about them. Ask questions about any commands you don’t understand. Make notes of
which commands you think you need to learn most quickly (will use most often). Remember
you will be using Emacs a lot, and have a lot of time to practice with commands. The sooner
you become fluent in the commands you need frequently, the easier your editing will be.

• Note: if there is something you want to do in Emacs, or some way you want it configured,
please ask. If your instructor doesn’t know, they can ask Drew, who is more than happy
to tell you (or find out if he doesn’t know).

5. Re-read D.4 now that you have practiced the basics of git. Note that we will only be using
the basics of git in this course. You might use more advanced git in later courses. Also,
please note that you do not need to use more advanced git on the MLP. Many students have
made messes of their git repositories by using git rebase, init, or other advanced commands
“because someone said to on StackOverflow” without understanding what those commands
did.

6


