MemsStep: An Interactive Tool for
Constructing and Visualizing the Run-Time
Memory Layout of Java Programs

Michelle Le Pham, Anna Nguyen, and Rebecca Schreib

Motivation

Novices often hold misconceptions about
the run-time behavior of programs

Motivation

Novices often hold misconceptions about
the run-time behavior of programs

N

Simply writing programs isn’t sufficient to help
novices overcome these misconceptions

Motivation

Novices often hold misconceptions about
the run-time behavior of programs

N

Simply writing programs isn'’t sufficient to help
novices overcome these misconceptions

N

We must deliberately teach conceptual models
of program execution and memory layout!

Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Desired features:

1. Visualization: Students can visualize the program’s run-time memory layout

Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Desired features:

1. Visualization: Students can visualize the program’s run-time memory layout
2. Custom Code: Students can trace the execution of arbitrary (Java) programs

Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Desired features:

1. Visualization: Students can visualize the program’s run-time memory layout
2. Custom Code: Students can trace the execution of arbitrary (Java) programs
3. Interactivity: Students actively construct the run-time memory layout

Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Desired features:

Visualization: Students can visualize the program’s run-time memory layout
Custom Code: Students can trace the execution of arbitrary (Java) programs
Interactivity: Students actively construct the run-time memory layout
Feedback: Students are given targeted formative feedback when they err

BN~

Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Desired features:

Visualization: Students can visualize the program’s run-time memory layout
Custom Code: Students can trace the execution of arbitrary (Java) programs
Interactivity: Students actively construct the run-time memory layout
Feedback: Students are given targeted formative feedback when they err
Realistic model: Students interact with a notional machine that uses a
relatively low level of abstraction

-

User Workflow

Tutorial Code Memory

Settings Main.java X MemObj.java X o Stack Contents Address = Heap Contents

Begin exercise public class Main {

1

2 public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj(); L
7

8

}

About

User Workflow

Tutorial Code Memory

Settings Main.java X MemObj.java X o Stack Contents Address = Heap Contents

Begin exercise public class Main {

1

2 public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj(); L
7

8

}

About

User Workflow

Tutorial Code Memory

Settings Main.java X MemObj.java X o Stack Contents Address = Heap Contents

Begin exercise public class Main {

1

2 public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj(); L
7

8

}

About

Settings

Base Address

0x1000 Submit
Initialize local vars? Reference Size
Off On 4 bytes 8 bytes
Require alignment? Object Alignment Size

Off On 4 bytes 8 bytes

User Workflow

Tutorial Code Memory

Settings Main.java | X MemObj.java X + Stack Contents Address = Heap Contents

Begin exercise public class Main {

1

2 public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj(); L
7

8

}

About

User Workflow

Tutorial Code Memory
Settings Main.java X MemObj.java] X + Stack Contents Address = Heap Contents
Begin exercise 1 public class MemObj {

2 private long val;

3 private MemObj obj;

4

5 public MemObj () {

6 this.val = 3L;

7 }

8

9 public MemObj (MemObj obj) {

10 this.obj = obj;
About 11 }

12

13 public void setObj (MemObj obj) {

14 this.obj = obj;

15 }

1A

User Workflow

Tutorial Code Memory

Settings Main.java | X MemObj.java | X + Stack Contents Address = Heap Contents

Begin exercise public class Main {

1

2 public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj(); L
7

8

}

About

User Workflow

Tutorial Code Memory

Settings Main.java X MemObj.java X o Stack Contents Address = Heap Contents

Begin exercise public class Main {

1

2 public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj(); L
7

8

}

About

' Settings ’ Main.java X MemObj.java X + Stack Contents Address = Heap Contents

1 public class Main {

2 public static void f() {
3 Integer a = 5;

4 int b = a;
5
6
7
8

‘ Begin exercise]

Integer[] ¢ = new Integer[]{3, a};
MemObj d = new MemObj();

}

About

Please specify the entry point for execution. The entry point should be a static method that takes zero arguments. X

Class name:

| |

Method name:

| |

Submit

' Settings ’ Main.java X MemObj.java X + Stack Contents Address = Heap Contents

1 public class Main {

2 public static void f() {
3 Integer a = 5;

4 int b = a;
5
6
7
8

‘ Begin exercise]

Integer[] ¢ = new Integer[]{3, a};
MemObj d = new MemObj();

}

About

Please specify the entry point for execution. The entry point should be a static method that takes zero arguments. X

Class name:

{ Main ‘

Method name:
K |

Submit

‘ Settings ’ Main.java X MemObj.java X + Stack Contents Address = Heap Contents

1 public class Main {

2 public static void f() {
3 Integer a = 5;

4 int b = a;
5
6
7
8

‘ Begin exercise

Integer[] ¢ = new Integer[]{3, a};
MemObj d = new MemObj();

}

About

Please specify the entry point for execution. The entry point should be a static method that takes zero arguments. X

Class name:

o |

Method name:
k |

Submit

Settings

Stop exercise

Main.java MemObj.java

Edit stack v

Edit heap v

Next

About

1 public class Main {

2| public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();

7
8

}

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Settings

Stop exercise

Edit stack v

Edit heap Vv

Next

About

Main.java MemObj.java
1 public class Main {
2| public static void f() {
3 Integer a = 5;
4 int b = a;
5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();
7
ik

Stack Contents

Method name: Main.f

Local variables:

Address

0x1071c

0x1018

0x1014

0x1010

0x100c

0x1008

0x1004

0x1000

Heap Contents

Settings

Stop exercise

Main.java MemObj.java

Edit stack v

Edit heap v

Next

About

1 public class Main {

2| public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();

7
8

}

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Settings

Stop exercise

Main.java MemObj.java

Edit stack v

Edit heap v

Next

About

1 public class Main {

2| public static void () {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();

7
8

}

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Settings

Stop exercise

Edit stack v

Edit heap v

Add object to heap
Add array to heap

Update heap value

Main.java MemObj.java
1 public class Main {
2| public static void f() {
3 Integer a = 5;
4 int b = a;
5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();
7 }
8k

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Settings

Stop exercise

Edit stack v

Add variable to stack
Update stack value
Add stack frame

Deallocate stack frame

Main.java MemObj.java

1 public class Main {

2 | public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]1{3, a};
6 MemObj d = new MemObj();

7
8

}

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Settings

Stop exercise

Edit stack v

Main.java MemObj.java

Add variable to stack

Update stack value
Add stack frame

Deallocate stack frame

1 public class Main {

2| public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();

7 }

81k

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java Stack Contents Address = Heap Contents
s _ Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 ‘ Integer a = 5; Local variables: 0x1018
4 int b = a;
5 Integer[] ¢ = new Integer[]{3, a}; 0x1014
6 MemObj d = new MemObj();
0x1010
7 }
8iit)
0x100c
0x1008
0x1004
0x1000
This operation will add a new local variable to the current (top) stack frame. Please specify the variable to be added. X

Variable's name:

|

Variable's value:

Submit

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java Stack Contents Address = Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 | Integer a = 5; Local variables: 0x1018
4 int b = a;
5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
6 MemObj d = new MemObj();
0x1010
7 }
Bl
0x100c
0x1008
0x1004
0x1000
This operation will add a new local variable to the current (top) stack frame. Please specify the variable to be added. X

Variable's name:

E

Variable's value:

E

Submit

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java Stack Contents Address = Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 | Integer a = 5; Local variables: 0x1018
4 int b = a;
5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
6 MemObj d = new MemObj();
7 } 0x1010
8.}
0x100c
0x1008
0x1004
0x1000
This operation will add a new local variable to the current (top) stack frame. Please specify the variable to be added. X

Variable's name:

E

Variable's value:

E

Submit

Settings Main.java MemObj.java Stack Contents Address = Heap Contents
: Method name: Main.f 0x101c
Stop exercise 1 public class Main {
2| public static void () {
Edit stack & 3 Integer a = 5; Local variables: 0x1018
4 int b = a;
] 5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
Edit heap v 6 MemObj d = new MemObj();
0x1010
7 }
Bii
e 0x100¢
About 0x1008
0x1004
0x1000
This line of code does add a variable to the stack, but there is at least one other operation that should be performed first. X

In particular, consider whether there is an object that should be allocated on the heap first. For example, if this statement
uses a primitive value in a location where a wrapper type is declared, the primitive value needs to be autoboxed
(converted to an instance of the corresponding wrapper class).

Settings Main.java MemObj.java Stack Contents Address = Heap Contents

. —_ Method name: Main.f 0x101c
Stop exercise 1 public class Main {
2| public static void f() {
Edit stack © 3 Integer a = 5; Local variables: 0x1018
4 int b = a;
) 5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
Edit heap v 6 MemObj d = new MemObj () ;
0x1010
7 }
8iih
Add object to heap 0x100c
Add array to heap 0x1008
Update heap value
0x1004
0x1000
This line of code does add a variable to the stack, but there is at least one other operation that should be performed first. X

In particular, consider whether there is an object that should be allocated on the heap first. For example, if this statement
uses a primitive value in a location where a wrapper type is declared, the primitive value needs to be autoboxed
(converted to an instance of the corresponding wrapper class).

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java

1 public class Main {

2| public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]1{3, a};
6 MemObj d = new MemObj();

7
8

}

This operation will allocate a new object on the heap. Please specify the object to be allocated.

Starting address:

|

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

Number of fields:

Submit

Settings

Stop exercise

Main.java MemObj.java

Edit stack v

Edit heap Vv

Next

About

1 public class Main {

2] public static void f() {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};
6 MemObj d = new MemObj();

7
8

}

This operation will allocate a new object on the heap. Please specify the object to be allocated.

Starting address:

Stack Contents

Method name: Main.f

Local variables:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

‘ 0x1000

Number of fields:

B

Submit

Settings

Stop exercise

Main.java MemObj.java Stack Contents

Method name: Main.f

Edit stack v

Edit heap Vv

Next

About

1 public class Main {

2 | public static void f() {

3 Integer a = 5; Local variables:
4 int b = a;

5 Integer[] ¢ = new Integer[]{3, a};

6 MemObj d = new MemObj();

7 }

8hih

This operation will allocate a new object on the heap. Please specify the object to be allocated.

Starting address:

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000

’ 0x1000

Number of fields:

E

Submit

About

O~NO UL bW

Integer a = 5;

int b = a;

Integer[] ¢ = new Integer[]{3,
MemObj d = new MemObj();

a};

LULUl YUILIUNITO.

Correct! Next, you need to provide preliminary information about each field.

Please specify the first field.

Starting address of the field:

0x1014

0x1010

0x100c

0x1008

0x1004

0x1000

Size of the field:

Initial value of the field:

Submit

About

O~NO UL AW

Integer a = 5;

int b = a;

Integer[] ¢ = new Integer[]1{3, a};
MemObj d = new MemObj();

LuLval vairiawvico.

Correct! Next, you need to provide preliminary information about each field.

Please specify the first field.

Starting address of the field:

0x1014

0x1010

0x100c

0x1008

0x1004

0x1000

0x1000

Size of the field:

4

Initial value of the field:

5

Submit

About

co~NO UL bW

Integer a = 5;

int b = a;

Integer[] ¢ = new Integer[]1{3, a};
MemObj d = new MemObj();

LuLval vairiawvico.

Correct! Next, you need to provide preliminary information about each field.

Please specify the first field.

Starting address of the field:

0x1014

0x1010

0x100c

0x1008

0x1004

0x1000

0x1000

Size of the field:

4

Initial value of the field:

5

Submit

Settings Main.java MemObj.java Stack Contents Address = Heap Contents
: Method name: Main.f 0x101c
Stop exercise 1 public class Main {
2| public static void f() {
Editstack 3 Integer a = 5; Local variables: 0x1018
4 int b = a;
] 5 Integer[] ¢ = new Integer[]1{3, a}; OloRs
Edit heap v 6 MemObj d = new MemObj () ;
0x1010
? }
Biiik
Next 0x100c
About 0x1008
0x1004
0x1000 5

‘ Settings Main.java MemObj.java Stack Contents Address = Heap Contents
' : Method name: Main.f 0x101c
| Stop exercise 1 public class Main {
2 | public static void f() {
Edit stack v 3 Integer a = 5; Local variables: 0x1018
4 int b = a;
f 5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
Add variable to stack 6 MemObj d = new MemObj();
7 } 0x1010
Update stack value 8 }
0x100c
Add stack frame
Deallocate stack frame 0x1008
0x1004
0x1000 5

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java Stack Contents Address = Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 ' Integer a = 5; Local variables: 0x1018
4 int b = a;
5 Integer[] ¢ = new Integer[]{3, a}; 0x1014
6 MemObj d = new MemObj();
0x1010
7 }
g1
0x100c
0x1008
0x1004
0x1000 5
This operation will add a new local variable to the current (top) stack frame. Please specify the variable to be added. X

Variable's name:

Variable's value:

|

Submit

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java Stack Contents Address = Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 | Integer a = 5; Local variables: 0x1018
4 int b = a;
5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
6 MemObj d = new MemObj();
0x1010
7 }
Bl
0x100c
0x1008
0x1004
0x1000 5
This operation will add a new local variable to the current (top) stack frame. Please specify the variable to be added. X

Variable's name:

a

Variable's value:

‘ 0x1000

Submit

Settings

Stop exercise

Edit stack v

Edit heap v

Next

About

Main.java MemObj.java Stack Contents Address = Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 | Integer a = 5; Local variables: 0x1018
4 int b = a;
5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
6 MemObj d = new MemObj();
0x1010
7 }
Bl
0x100c
0x1008
0x1004
0x1000 5
This operation will add a new local variable to the current (top) stack frame. Please specify the variable to be added. X

Variable's name:

a

Variable's value:

‘ 0x1000

Submit

Settings Main.java MemObj.java Stack Contents Address = Heap Contents
; Method name: Main.f 0x101c
Stop exercise 1 public class Main {
z | public static void f() { _
Edit stack ~ 3 Integer a = 5; Local variables: Ox1018
4 int b = a; a: 0x1000
] 5 Integer[] ¢ = new Integer[]1{3, a}; 0x1014
Edit heap v 6 MemObj d = new MemObj () ;
0x1010
7 }
8.k
Next 0x100¢
About 0x1008
0x1004
0x1000 5

Settings

Stop exercise

Main.java MemObj.java

Edit stack v

Edit heap v

Next

About

1 public class Main {

2| public static void () {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]1{3, a};
6 MemObj d = new MemObj();

7
8

}

Stack Contents

Method name: Main.f

Local variables:
a: 0x1000

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000 5

Settings Main.java MemObj.java Stack Contents Address Heap Contents
Stop exercise T e e Method name: Main.f 0x101c
Editstack g publiﬁt:;:"c_ig ZO;? L Local variables: 0x1018
g ;:iege:[?;c = new Integer[]{3, a}; = 1000 G
Edit heap v 6 MemObj d = new MemObj();
7 } 0x1010
HEXE o 0x100¢
About 0x1008
0x1004
0x1000 5

Code

Memory

Main.java MemObij.java Stack Contents Address Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 Integer a = 5; Local variables: 0x1018 null
4 int b = a; a: 0x1000 : :
5 Integer[] c = new Integer[]{3, a}; b: 5 L continatoh
6 MemObj d = new MemObj(); ' of 0x1010
7 } c: 0x1008
8 } d: 0x1010 0x1010 3L
0x100c 0x1000
0x1008 0x1004
0x1004 3
0x1000 5
Congratulations! You've correctly constructed the state of the stack and the heap for this program. If you'd like to try a X

different program, you can press the "Stop exercise" button and you will be given the opportunity to edit the code.

Research Questions

1. Is using MemStep more or less effective at improving student
learning when compared to traditional learning activities?

Research Questions

1. Is using MemStep more or less effective at improving student
learning when compared to traditional learning activities?

2. Is using MemStep more or less engaging and satisfying for students
when compared to traditional learning activities?

Research Questions

1. Is using MemStep more or less effective at improving student
learning when compared to traditional learning activities?

2. Is using MemStep more or less engaging and satisfying for students
when compared to traditional learning activities?

3. How effective is MemStep at sparking technical curiosity?

From the CS2023 curriculum:
“Technical Curiosity: Students must develop interest in understanding how
programs are executed, how programs and data are stored in memory, etc.”

Experimental Methodology

e Population: 248 students in a second-year program design course
e Random assignment of students to control & experimental groups

Experimental Methodology

e Population: 248 students in a second-year program design course
e Random assignment of students to control & experimental groups

e Training exercises
o All students watched the same video lecture (~45 min)
o Experimental group completed four exercises using MemStep
o Control group completed same four exercises in a worksheet

Experimental Methodology

e Population: 248 students in a second-year program design course
e Random assignment of students to control & experimental groups

e Training exercises
o All students watched the same video lecture (~45 min)
o Experimental group completed four exercises using MemStep
o Control group completed same four exercises in a worksheet

e Test exercise
o All students completed four exercises in a worksheet

Experimental Methodology

e Post-study survey
o All students rated agreement with statements about the training
o Experimental group provided qualitative feedback

Experimental Methodology

e Post-study survey
o All students rated agreement with statements about the training
o Experimental group provided qualitative feedback

e End-of-semester survey
o All students who used MemStep while preparing for test 4 rated
agreement with statements about its helpfulness

Experimental Methodology

e Post-study survey
o All students rated agreement with statements about the training
o Experimental group provided qualitative feedback

e End-of-semester survey
o All students who used MemStep while preparing for test 4 rated
agreement with statements about its helpfulness

e When applicable, we compared the experimental and control groups
using a two-tailed unpaired t-test

Post-Test Results n = 115 per group

I Control [Experimental

o5 Control:
Max: 49.5
20 | Mean: 34.4
Min: O
15
Experimental:
- Max: 50
Mean: 36.7
Min: 1.5
5
p-value: 0.091
0

(45,50] (40, 45] (35, 40] (30, 35] (25,30] (20,25] (15,20] (10,15] (5, 10] [0, 5] Cohen’s d: 0.22

Post-Survey Results n = 115 per group

Please rate the extent to which you agree with the following statements regarding the
version of the Memory assignment that you completed in advance of today's class.

Ctrl. Exp. p-value

The assignment was engaging; it captured my attention

22 424 <0. 1
and | felt motivated to progress through the exercises. 3 0.0000

The assignment was interactive; | felt like | was actively
involved in an exchange of information that gradually 3.11 4.62 <0.00001
deepened my understanding of the material.

The assignment was satisfying to complete; | felt a

44 4. <0. 1
sense of accomplishment when | completed it. 3 30 0.0000

1 = Strongly Disagree » 5 = Strongly Agree

Qualitative Feedback

What was your overall impression of MemStep?

Overall Tone Freq. Theme
Positive 105 Helpful/effective for learning
Neutral 5 Liked the feedback
Negative 2 Interactive/hands on

Fun/enjoyable
Easy to use
Well-designed
Engaging

Freq.
58
24
23
22
15
14
14

n=112

End-of-Semester Survey Results n = 237

Did you use MemStep at all when preparing for test 4?

No (34.6%)

Yes (65.4%)

End-of-Semester Survey Results n =155

Please rate the extent to which you agree with each of the following
statements regarding your use of MemStep to prepare for test 4.

Avg. Rating
Using MemStep helped me to deepen my understanding of how data gets 461
laid out in memory during the execution of a Java program. '
Using MemStep made it easier to create and walk through additional 4.49
practice problems in preparation for the test. '
Using MemStep helped to prepare me for similar problems on the test. 4.50

1 = Strongly Disagree » 5 = Strongly Agree

End-of-Semester Survey Results n =155

Please rate the extent to which you agree with each of the following
statements regarding your use of MemStep to prepare for test 4.

Avg. Rating

Having the ability to walk through arbitrary Java programs using MemStep
made me curious to try different programs in order to see how different 3.91
types of data get laid out in memory

Having the ability to walk through arbitrary Java programs using MemStep
made me curious to try different programs in order to see what different 3.87
different steps happen under the hood during execution.

1 = Strongly Disagree » 5 = Strongly Agree

Conclusion

e MemStep actively engages students in the construction and
visualization of the run-time layout of memory

Conclusion

e MemStep actively engages students in the construction and
visualization of the run-time layout of memory

e Students who used MemStep to learn...
o Performed at least as well as those who used a worksheet
o Perceived MemStep as more engaging and satisfying to use
o Typically agreed that MemStep sparked technical curiosity

Conclusion

e MemStep actively engages students in the construction and
visualization of the run-time layout of memory

e Students who used MemStep to learn...
o Performed at least as well as those who used a worksheet
o Perceived MemStep as more engaging and satisfying to use
o Typically agreed that MemStep sparked technical curiosity

e MemStep makes it easy for students & instructors to create infinite
new practice problems!

Questions?

Try out MemStep: cs.rice.edu/~rjs7/courseware
Contact if you have questions: ris@rice.edu

http://cs.rice.edu/~rjs7/courseware
mailto:rjs@rice.edu

