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Novices often hold misconceptions about
the run-time behavior of programs

N

Simply writing programs isn'’t sufficient to help
novices overcome these misconceptions

N

We must deliberately teach conceptual models
of program execution and memory layout!
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Goals

Design a tool that will help students to develop accurate conceptual
models of program execution and the run-time layout of memory

Desired features:

Visualization: Students can visualize the program’s run-time memory layout
Custom Code: Students can trace the execution of arbitrary (Java) programs
Interactivity: Students actively construct the run-time memory layout
Feedback: Students are given targeted formative feedback when they err
Realistic model: Students interact with a notional machine that uses a
relatively low level of abstraction
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2 public static void f() {
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6 MemObj d = new MemObj(); L
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User Workflow

Tutorial Code Memory
Settings Main.java X MemObj.java] X + Stack Contents Address = Heap Contents
Begin exercise 1 public class MemObj {

2 private long val;

3 private MemObj obj;

4

5 public MemObj () {

6 this.val = 3L;

7 }

8

9 public MemObj (MemObj obj) {

10 this.obj = obj;
About 11 }

12

13 public void setObj (MemObj obj) {

14 this.obj = obj;

15 }

1A
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1 public class Main {

2 public static void f() {
3 Integer a = 5;

4 int b = a;
5
6
7
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‘ Begin exercise ]
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‘ Settings ’ Main.java X MemObj.java X + Stack Contents Address = Heap Contents

1 public class Main {

2 public static void f() {
3 Integer a = 5;

4 int b = a;
5
6
7
8

‘ Begin exercise
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}

About
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1 public class Main {
2| public static void f() {
3 Integer a = 5;
4 int b = a;
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6 MemObj d = new MemObj();
7
ik

Stack Contents

Method name: Main.f

Local variables:

Address
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0x1004

0x1000

Heap Contents
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3 Integer a = 5;
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uses a primitive value in a location where a wrapper type is declared, the primitive value needs to be autoboxed
(converted to an instance of the corresponding wrapper class).
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(converted to an instance of the corresponding wrapper class).
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3 Integer a = 5; Local variables:
4 int b = a;
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This operation will allocate a new object on the heap. Please specify the object to be allocated.

Starting address:

Address = Heap Contents
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Integer a = 5;

int b = a;

Integer[] ¢ = new Integer[]{3,
MemObj d = new MemObj();

a};

LULUl YUILIUNITO.

Correct! Next, you need to provide preliminary information about each field.

Please specify the first field.

Starting address of the field:

0x1014

0x1010

0x100c

0x1008

0x1004

0x1000

Size of the field:

Initial value of the field:
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Correct! Next, you need to provide preliminary information about each field.

Please specify the first field.

Starting address of the field:
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Correct! Next, you need to provide preliminary information about each field.

Please specify the first field.

Starting address of the field:

0x1014
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Variable's name:
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1 public class Main {

2| public static void () {

3 Integer a = 5;

4 int b = a;

5 Integer[] ¢ = new Integer[]1{3, a};
6 MemObj d = new MemObj();

7
8

}

Stack Contents

Method name: Main.f

Local variables:
a: 0x1000

Address = Heap Contents
0x101c
0x1018
0x1014
0x1010
0x100c
0x1008
0x1004

0x1000 5



Settings Main.java MemObj.java Stack Contents Address  Heap Contents
Stop exercise T e e Method name: Main.f 0x101c
Editstack g publiﬁt:;:"c_ig ZO;? L Local variables: 0x1018
g ;:iege:[?;c = new Integer[]{3, a}; = 1000 G
Edit heap v 6 MemObj d = new MemObj();
7 } 0x1010
HEXE o 0x100¢
About 0x1008
0x1004
0x1000 5




Code

Memory

Main.java MemObij.java Stack Contents Address Heap Contents
Method name: Main.f 0x101c
1 public class Main {
2 public static void f() {
3 Integer a = 5; Local variables: 0x1018 null
4 int b = a; a: 0x1000 : :
5 Integer[] c = new Integer[]{3, a}; b: 5 L continatoh
6 MemObj d = new MemObj(); ' of 0x1010
7 } c: 0x1008
8 } d: 0x1010 0x1010 3L
0x100c 0x1000
0x1008 0x1004
0x1004 3
0x1000 5
Congratulations! You've correctly constructed the state of the stack and the heap for this program. If you'd like to try a X

different program, you can press the "Stop exercise" button and you will be given the opportunity to edit the code.
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Research Questions

1. Is using MemStep more or less effective at improving student
learning when compared to traditional learning activities?

2. Is using MemStep more or less engaging and satisfying for students
when compared to traditional learning activities?

3. How effective is MemStep at sparking technical curiosity?

From the CS2023 curriculum:
“Technical Curiosity: Students must develop interest in understanding how
programs are executed, how programs and data are stored in memory, etc.”
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e Random assignment of students to control & experimental groups

e Training exercises
o All students watched the same video lecture (~45 min)
o Experimental group completed four exercises using MemStep
o Control group completed same four exercises in a worksheet

e Test exercise
o All students completed four exercises in a worksheet



Experimental Methodology

e Post-study survey
o All students rated agreement with statements about the training
o Experimental group provided qualitative feedback



Experimental Methodology

e Post-study survey
o All students rated agreement with statements about the training
o Experimental group provided qualitative feedback

e End-of-semester survey
o All students who used MemStep while preparing for test 4 rated
agreement with statements about its helpfulness



Experimental Methodology

e Post-study survey
o All students rated agreement with statements about the training
o Experimental group provided qualitative feedback

e End-of-semester survey
o All students who used MemStep while preparing for test 4 rated
agreement with statements about its helpfulness

e When applicable, we compared the experimental and control groups
using a two-tailed unpaired t-test



Post-Test Results n = 115 per group

I Control [ Experimental

o5 Control:
Max: 49.5
20 | Mean: 34.4
Min: O
15
Experimental:
- Max: 50
Mean: 36.7
Min: 1.5
5
p-value: 0.091
0

(45,50] (40, 45] (35, 40] (30, 35] (25,30] (20,25] (15,20] (10,15] (5, 10] [0, 5] Cohen’s d: 0.22



Post-Survey Results n = 115 per group

Please rate the extent to which you agree with the following statements regarding the
version of the Memory assignment that you completed in advance of today's class.

Ctrl. Exp. p-value

The assignment was engaging; it captured my attention

22 424 <0. 1
and | felt motivated to progress through the exercises. 3 0.0000

The assignment was interactive; | felt like | was actively
involved in an exchange of information that gradually 3.11 4.62 <0.00001
deepened my understanding of the material.

The assignment was satisfying to complete; | felt a

44 4. <0. 1
sense of accomplishment when | completed it. 3 30 0.0000

1 = Strongly Disagree » 5 = Strongly Agree



Qualitative Feedback

What was your overall impression of MemStep?

Overall Tone Freq. Theme
Positive 105 Helpful/effective for learning
Neutral 5 Liked the feedback
Negative 2 Interactive/hands on

Fun/enjoyable
Easy to use
Well-designed
Engaging

Freq.
58
24
23
22
15
14
14

n=112



End-of-Semester Survey Results n = 237

Did you use MemStep at all when preparing for test 4?

No (34.6%)

Yes (65.4%)




End-of-Semester Survey Results n =155

Please rate the extent to which you agree with each of the following
statements regarding your use of MemStep to prepare for test 4.

Avg. Rating
Using MemStep helped me to deepen my understanding of how data gets 461
laid out in memory during the execution of a Java program. '
Using MemStep made it easier to create and walk through additional 4.49
practice problems in preparation for the test. '
Using MemStep helped to prepare me for similar problems on the test. 4.50

1 = Strongly Disagree » 5 = Strongly Agree




End-of-Semester Survey Results n =155

Please rate the extent to which you agree with each of the following
statements regarding your use of MemStep to prepare for test 4.

Avg. Rating

Having the ability to walk through arbitrary Java programs using MemStep
made me curious to try different programs in order to see how different 3.91
types of data get laid out in memory

Having the ability to walk through arbitrary Java programs using MemStep
made me curious to try different programs in order to see what different 3.87
different steps happen under the hood during execution.

1 = Strongly Disagree » 5 = Strongly Agree
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Conclusion

e MemStep actively engages students in the construction and
visualization of the run-time layout of memory

e Students who used MemStep to learn...
o Performed at least as well as those who used a worksheet
o Perceived MemStep as more engaging and satisfying to use
o Typically agreed that MemStep sparked technical curiosity

e MemStep makes it easy for students & instructors to create infinite
new practice problems!



Questions?

Try out MemStep: cs.rice.edu/~rjs7/courseware
Contact if you have questions: ris@rice.edu



http://cs.rice.edu/~rjs7/courseware
mailto:rjs@rice.edu

