
Duke Gitlab CI/CD Walkthrough
ECE 651

This is a walkthrough on setting up CI/CD on Duke’s Gitlab. We assume that you
already have an Ubuntu 18 VM from Duke prior to starting this tutorial. Please note that
we assume the VM is Ubuntu 18. If you use an Ubuntu 16 VM, things are likely not to work.
If you do not already have an Ubuntu 18 VM, please obtain one via vcm.duke.edu.

1 Overview

Recall from class that in Continuous Integration/Continuous Deployment, we want to auto-
mate testing and deployment when we push to particular branches of our GitLab repository.
Recall from class that the general picture looks like this:

push

test

dep
loy

Your computer GitLab

Test Servers

Production Servers

Further recall that a daemon (in lecture: green squiggle) runs on the test and development
servers to handle running of the CI/CD pipeline’s jobs. You are going to setup a server (a VM
from Duke’s VCM) which will be both your testing and production server for this example
(in reality we would want those separated). Then you are going to setup GitLab to use
that server to run pipelines, and work with a small project we have put together to try that
out. We’ll add a few features to our CI/CD, then wrap up by talking about more things we
could/should do, but are not doing here.

2 Set up VM

Gitlab’s CI/CD needs a place to run your pipeline’s jobs. The first thing you need to do is
setup your VM to handle such jobs.

The first thing you will need is docker:

1

vcm.duke.edu

sudo apt install docker.io

Now let us set some things up for gitlab runner. Note that when you do “sudo adduser
gitlabrunner” in these steps, it will ask you for a password (make it something good!) and
a bunch of other information that you can just leave blank. Do these steps:

sudo curl -L --output /usr/local/bin/gitlab-runner \

https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-linux-amd64

sudo chmod +x /usr/local/bin/gitlab-runner

sudo adduser gitlabrunner

sudo adduser gitlabrunner docker

sudo gitlab-runner install --user=gitlabrunner --working-directory=/home/gitlabrunner

sudo gitlab-runner start

Note that by adding the gitlabrunner user to the docker group, they have significant
priveledges. While some may argue that we may as well just do things as root (since having
Docker access can priveledge escalate), not being root helps avoid accidental catastrophes.

Leave this terminal open when you do the next step, as we will be back shortly to register
the runner with gitlab.

3 Set up a project on gitlab

The first step is to create a project on gitlab. For this particular walkthrough, you are
going to create a fork of the factorserver project. This project has a small server that
reads an integer, and writes back it prime factors. You can find the factorserver project
at https://gitlab.oit.duke.edu/adh39/factorserver. Note that you fork it with the
“fork” button in the top right of the project details page.

Once you have that forked, go to Settings in the left menu, then CI/CD under it (note:
there is a different top-level menu item for CI/CD—you do not want that one. You want
the one under settings).

The fourth item down should say “Runners”, hit the “Expand” button for it. On the
right, click “Disable Shared Runners”. On the left, there should be a “Set up a specified
Runner manually” section.

Now go back to your terminal on your VM and do

sudo gitlab-runner register

It will ask you for the gitlab-ci coordinator URL, put in

https://gitlab.oit.duke.edu/

then it will ask you for the registration token. Get this from the gitlab settings page you
are looking at (it should be red text on an orange background). Next it will ask you for the
description. You can put in any description you will recognize (like “ECE 651 CI”). Then it

2

https://gitlab.oit.duke.edu/adh39/factorserver

will ask you for the tags for this runner. In a real situation, you might have a wide variety
of tags which could be where we want things to go (testing, deployment) or technologies we
need available (java, postgresql, etc). We’ll just use on tag here: ece651.

Last, it will ask you to enter the executor: choose shell. We’re going to use shell, so that
we can build and deploy our images easily. We’ll still be using Docker for clean deployment,
but we will build an explicit image in our CI commands.

If you go back to gitlab in your browser, and refresh the settings page you are on, it
should now list this runner under “Runners activated for this project.”

4 Executing our CI pipelines

Now that we have things setup on our GitLab project, and the server that will run the
gitlabrunner daemon, it is time to go clone our gitlab repository and do development work.
Go to your normal development environment (e.g., VirtualBox on your laptop—NOT the
server VM), and clone the gitlab project your forked earlier.

Gitlab’s CI will execute our pipeline when we push changes. At the moment, all our
changes are pushed. Let’s make one small change to our code so that a push will do something
meaningful:

Go into the src/main/java/factorserver/FactorIO.java and find the GREETING con-
stant. Change it to have your name instead of mine (if your name is also “Drew” put a last
initial).

Now do a gradle build (you are using Emacs, so this is just “C-c C-v”, right?). You will
see that it failed our test cases in IOTest because our prompt messages are no longer what
are expected. Go to src/test/java/factorserver/IOTest.java and fix the GREETING

here to match what you changed. Build again and all should be well.
Now commit and push.
Note that the first time you do this, the build job will take about 3–5 minutes, because

it needs to build the docker image (longer if you need to fetch the base images). Subsequent
pipelines can re-use that image and will be much faster.

Go to the CI/CD menu item (now the top-level one, not the one under settings) in gitlab
in your browser. You should have a “passed” pipeline. You’ll see that under “Stages” there
are two check marks—hovering your mouse over them will show you that the first is “build”
and the second is “test” (which runs our JUnit tests).

Let’s just see what happens if our tests fail. Go into the code, and break one of the tests
(introduce any bug you want). Now push again.

The new pipeline will fail. If you click on the pipeline number (second column) it will
show you more details: build succeeded, but test failed. Clicking over to the failed jobs tab
will give you the output of this job.

Note that a failed pipeline may come from a variety of reasons. It is good to go look at
the failed job and see what went wrong. If something is setup wrong in your pipeline, if you
are missing a file, or if you code fails a test, the pipeline could fail. Looking at the output
in GitLab’s web interface will tell you what happened and help you diagnose the problem.

3

Let’s go back and fix your bug before proceeding.

5 Test Coverage

We’ve been using Clover to determine coverage of our test cases already this semester. This
CI pipeline is setup to have Clover produce an html report, and display it with gitlab pages.
If you find “Settings” on the menu on the left of the gitlab webpage, and then “Pages” under
that, you will get to a page that says “Congratulations! Your pages are served under:” in the
middle. Clicking on that link will bring up the html version of Clover’s report. This report
has some other details (such as “Code metrics”) but presents basically the same coverge
report that you have already seen (Note: it computes coverage percent slightly differently
than we do for grading, since we require branch coverage).

Let us also have gitlab report our coverage percentage on both the pipeline jobs and the
project’s home page. If you look at the test script, you will find that it runs coverage_summary.sh.
This script just asks Emacs to display the coverage results and save them to a file, then greps
for the Total result. The important part of this script is that it will print a line like

TOTAL COVERAGE: 100%

We want gitlab to understand that the 100 from that line is our coverage percentage.
Go back to “Settings” → “CI/CD” in gitlab’s menu. At the top of that page is “General
pipelines.” Expand that and scroll down until you see “Test coverage parsing.” There is a
box to enter a regular expression1, which needs to match the line with the coverage results.
For our output, the regexp would be:

TOTAL COVERAGE: \d+\%

Unfortunately, to see this result, we still have to go into “CI/CD” → “Jobs” and then
find our test job (the coverage is the last column with a name on the right).

Let’s edit the README.md file (which displays on the main project page) to include
links to our coverage “badges.” We can also just put a direct link to the coverage details
here to make it easier to find.

On the first line of the README.md file (after “ECE 651: CI/CD Intro: Factoring
Server”) add two image links. The first is for your “pipeline badge” and should look like
this:

![pipeline](https://gitlab.oit.duke.edu/NETID/PROJECT/badges/master/pipeline.svg)

and the second like this:

![coverage](https://gitlab.oit.duke.edu/NETID/PROJECT/badges/master/coverage.svg?job=test)

1We assume most of you are familiar with regular expressions from your algorithms class. If not, the
short version is that they describe patterns of text.

4

Of course, you should replace NETID with your own netid, and PROJECT with your
project name.

Let us also add a link to our detailed coverage information. Go down to the end and add

Coverage

[Detailed coverage](https://NETID.pages.oit.duke.edu/PROJECT/dashboard.html)

Now, we’d like to push our changes, but we do not really want to run the entire CI
Pipeline again—we haven’t changed any code, or anything code related (like docker files,
scripts, data, configuration, etc). So when you push, run:

git push -o ci.skip

Note that here, -o just passes the next option to the GitLab server, for use in its pro-
cessing of the push command. GitLab sees the ci.skip and takes it to mean to not run any
CI pipelines on this push.

6 Deploying

We would also like to deploy our prime factoring server when we push to master (and only
to master!).

To change how our pipelines work, we need to edit .gitlab-ci.yml, and add another
job:

deploy:

tags:

- ece651

stage: deploy

script: ./scripts/redeploy.sh

Note that the redeploy script is already included, so you don’t need to write it. This
script is pretty simplistic: it just kills the existing docker container of our server (if any)
and then starts a new one. For a real redeployment, we would want to do something more
complex, so that we can gracefully handle anything currently being done.

We also need to go up to stages and add deploy. Look near the top of the file, and
change stages to be:

stages:

- build

- test

- coverage

- deploy

5

Go ahead and commit and push this, then give it a try! Wait until your pipeline com-
pletes, then give gradle a few seconds to get your server running2. Then you can connect
with the following3 (replace YOURSERVER with the hostname of your server—note this is
the VCM server where you setup gitlab runner, e.g., vcm-XXXX.vm.duke.edu):

netcat -N YOURSERVER 1651

You should get your welcome message and prompt, and be able to type a number and
get it factored. Congratulations, you have successfully deployed to your server!

7 Test Our Deployment

But wait: we had to manually test that our deployment worked correctly. That may not
sound like a big deal (after all, at this point we have built the docker image, passed our
test cases, and are just running it...) but it could be—what if something goes wrong? In
fact, this step is a really critical one to test, because if something went wrong and we didn’t
actually deploy correctly, our service is down.

What can we do? Well, lets add another stage to our CI/CD pipeline to test our deploy-
ment. Go back into your .gitlab-ci.yml and add another job:

test-deployment:

tags:

- ece651

stage: test-deployment

dependencies:

- deploy

script: ./scripts/test-deployment.sh

As before, go back to stages and add it there:

stages:

- build

- test

- coverage

- deploy

- test-deployment

2The deployment script runs docker detached, so it just exits immediately. It takes a handful of seconds
for gradle to start up your application inside docker.

3If you are not familiar with netcat, it is a program which makes network connections to other computers.
The way we are using it below, will basically connect your standard input/output to a socket connected to
the server’s port 1651.

6

Note that the test-deployment.sh script uses netcat to make a connection, and waits
until that succeeds. If it fails 20 times, it gives up (1 second per try)—this gives gradle
enough time to get the server up and running. After that, it sends one request and makes
sure it gets the right response.

You might think “only one test case?” but remember that at this point, we have run our
entire test suite and are very confident our server works—we are just testing that it deployed
correctly.

8 Further Improvements

If we were doing something real, we would want to make several other improvements to our
CI/CD setup:

1. Multiple branches. We wouldn’t actually do everything on master. We would, in fact,
use master to deploy to production. We would likely have testing (or some other
name for the same purpose) for code that we think is ready to go, but not yet deployed
to production.

2. Separate servers for testing and production. We would setup our CI pipleine to deploy
testing to the test server and master to the production servers. Note that you use
the only keyword in your .gitlab-ci.yml file to make things happen only on specific
branches.

3. We would want our test-deployment to connect to our deployed instance from a
different machine. Doing it from the same machine means we are not testing a variety
of things that can go wrong (e.g., if our firewall blocks that port from the outside...).

4. A smoother handover of requests from the old to the new. At present, we just kill the
old one, dropping any requests that it might be handling. Then we start a new one.
Ideally, we would start the new version, test that it is deployed correctly, then switch
new requests to go to it (while letting old requests complete). Finally, once the old
version is idle, we would terminate it. Note that this functionality would be another
stage or two in our CI/CD pipelines.

9 More Information

This tutorial has gotten you set up with the basics, so that you have a starting point for
your own projects (both in this class and beyond).

For further reference, you might want to consult:

• The gitlab CI documentation: https://docs.gitlab.com/ee/ci/yaml/

• The gitlab runner documentation: https://docs.gitlab.com/runner/

7

https://docs.gitlab.com/ee/ci/yaml/
https://docs.gitlab.com/runner/

• The Dockerfile documentation: https://docs.docker.com/engine/reference/builder/

• The docker run documentation: https://docs.docker.com/engine/reference/run/

8

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/run/

	Overview
	Set up VM
	Set up a project on gitlab
	Executing our CI pipelines
	Test Coverage
	Deploying
	Test Our Deployment
	Further Improvements
	More Information

