
Decoupled Store Completion/Silent Deterministic Replay:
Enabling Scalable Data Memory for CPR/CFP Processors

Andrew Hilton and Amir Roth

Computer and Information Sciences Department, University of Pennsylvania

{adhilton, amir}@cis.upenn.edu

Abstract

CPR/CFP (Checkpoint Processing and Recovery/Continual Flow
Pipeline) support an adaptive instruction window that scales to
tolerate last-level cache misses. CPR/CFP scale the register file by
aggressively reclaiming the destination registers of many in-flight
instructions. However, an analogous mechanism does not exist for
stores and loads. As the window expands, CPR/CFP processors
must track all in-flight stores and loads to support forwarding and
detect memory ordering violations.

The previously-described SVW (Store Vulnerability Window)
and SQIP (Store Queue Index Prediction) schemes provide scal-
able, non-associative load and store queues, respectively. However,
they don’t work smoothly in a CPR/CFP context. SVW/SQIP rely
on the ability to dynamically stall some loads until a specific older
store writes to the cache. Enforcing this serialization in CPR/CFP
is expensive if the load and store are in the same checkpoint.

We introduce two complementary procedures that implement
this serialization efficiently. Decoupled Store Completion (DSC)
allows stores to write to the cache before the enclosing checkpoint
completes execution. Silent Deterministic Replay (SDR) supports
mis-speculation recovery in the presence of DSC by replaying
loads older than completed stores using values from the load queue.
The combination of DSC and SDR enables an SVW/SQIP based
CPR/CFP memory system that outperforms previous designs while
occupying less area.

Categories and Subject Descriptors

C.1.1 [Processor Architectures]: Single Data Stream Architectures—
Pipeline processors

General Terms

Design, Performance

Keywords

Checkpoint processors, load-store queues

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA ’09, June 20–24, 2009, Austin, Texas, USA.
Copyright c© 2009 ACM 978-1-60558-526-0/09/06. . . $5.00

1. Introduction

Building an instruction window that exposes both instruction- and
memory- level parallelism requires scaling four critical structures:
register file, issue queue, load queue, and store queue. CPR (Check-
point Processing and Recovery) [1] scales the register file by man-
aging physical registers at a checkpoint granularity. CPR reclaims
registers that are not named in checkpoints, overcoming the tra-
ditional constraint that every register-writing in-flight instruction
have a physical register allocated to its destination. CFP (Contin-
ual Flow Pipelines) extends CPR to scale the register file and is-
sue queue in the presence of last-level cache misses [23]. Miss-
dependent instructions drain from the window and release their is-
sue queue and register resources. When the miss returns, they are
re-injected into the window, re-acquire these resources and execute.

Unfortunately, checkpoint-granularity management does not
apply to stores and loads in a straightforward way. As the win-
dow grows, CPR/CFP must continue to track all in-flight stores
and loads to support in-order store commit, store-load forward-
ing, and the detection of both intra-thread and inter-thread memory
ordering violations. Existing CPR/CFP data memory system pro-
posals rely on hierarchy—traditional associative primary load and
store queues backed by secondary queues. The secondary queues
in these designs suffer from one of two problems: they are either
area and power inefficient [1] or they activate only in the shadow
of a last-level cache miss and don’t support a large window in the
more general cases of data cache misses, store misses, or regions
of otherwise low ILP [6].

Conceptually, the simplest and most efficient design uses flat
non-associative load and store queues that support a large window
under all conditions. As such, the previously-proposed Store Vul-
nerability Window (SVW) [3, 16] and Store Queue Index Predic-
tion (SQIP) [21] are attractive. However, there is a subtle but im-
portant mismatch between these techniques and CPR/CFP. Specif-
ically, both SQIP and SVW fundamentally rely on the ability to
dynamically serialize a particular store-load pair, i.e., to stall ei-
ther load execution (SQIP) or re-execution (SVW) until the store
completes and writes to the data cache. Unfortunately, CPR man-
ages not only registers at a checkpoint granularity but also stores—
stores cannot begin writing to the cache until the entire checkpoint
finishes execution and the possibility of a squash can be ruled out.
Dynamically serializing a store-load pair that occurs in the same
checkpoint requires flushing and splitting the checkpoint into two
during subsequent execution. This is slow and wastes checkpoints.

In this paper, we propose two complementary mechanisms that
allow SVW/SQIP to operate effectively in a CPR/CFP environ-
ment by reconciling checkpoint-granularity register management
with traditional instruction-granularity store completion. DSC (De-
coupled Store Completion) allows stores to complete and write to

the cache before the enclosing checkpoint completes execution—
although stores still complete in program order. SDR (Silent De-
terministic Replay) supports mis-speculation recovery in the pres-
ence of DSC. In CPR/CFP, when an un-checkpointed instruction
mis-speculates, the processor squashes to the next older check-
point, and re-starts execution there. With DSC, it is possible that
completed stores—and older loads over-written by them—would
have to be flushed and re-executed. SDR re-constitutes the values
of these loads from the load queue, avoiding both data cache access
and potential write-after-read hazards with younger DSC stores.

DSC and SDR act synergistically with each other and with SVW
and SQIP. SVW already uses a load queue that captures values, and
so SDR comes essentially for free. SDR simplifies the SVW imple-
mentation by removing the need to checkpoint SVW’s Bloom filter.
SDR enables DSC which improves SVW/SQIP’s performance and
eliminates the need to speculatively serialize store-load pairs. Fi-
nally, DSC/SDR simplify the multiprocessor interface of CPR/CFP
by making it identical to the interface of a traditional instruction-
granularity processor.

Our work makes the following contributions:

• We identify a mismatch between SVW/SQIP and CPR/CFP.
CPR/CFP effectively completes stores at checkpoint granularity
whereas SVW/SQIP requires stores to complete at instruction
granularity.

• We introduce DSC/SDR, complementary procedures which re-
solve this mismatch by supporting instruction-granularity store
completion in a checkpoint substrate.

• We show that for CPR/CFP, a memory system using SVW/SQIP
load and store queues and augmented with DSC/SDR out-
performs existing designs and occupies less area.

2. Background: SVW/SQIP

SVW and SQIP were proposed in the context of instruction-
granularity ROB-based processors. We review them here.

Load Re-Execution and SVW (Store Vulnerability Win-
dow). Conventional processors detect intra- and inter-thread mem-
ory ordering violations by “snooping” (i.e., searching) a load queue
that tracks the addresses of all in-flight loads in program order. The
primary drawback of this approach is the non-scalability of associa-
tive search. An alternative approach is to re-execute loads in-order
prior to commit, detecting a violation when the values obtained
by (out-of-order) execution and (in-order) re-execution differ [3].
Re-execution is cheaper than associative search for large windows.
It also does not signal spurious violations. Finally, it can detect
violations in other forms of load speculation, not just store-load
ordering speculation. Its primary drawback is that it consumes sig-
nificant data cache bandwidth.

Store Vulnerability Window (SVW) is an address-based fil-
ter that reduces the data cache bandwidth requirements of load
re-execution [16, 17]. The basic idea is that a load can skip re-
execution if no store has written to its address in a sufficiently long
time. SVW identifies dynamic stores using monotonically increas-
ing sequence numbers (SSNs). A store’s store queue position is
the low order bits of its SSN. A small address-indexed table called
the Store Sequence Bloom Filter (SSBF) contains the SSNs of the
youngest store to write to each (hashed) address. An extended com-
mit pipeline processes executed stores and loads in order. Stores
write their SSNs at the SSBF index corresponding to their address.
The global register SSNverify tracks the SSN of the youngest store
to have updated the SSBF. Loads read the SSBF using their address
and determine whether they need to re-execute based on the SSN
they find. The re-execution test is specific to the type of speculation
the load undergoes.

SQIP (Store Queue Index Prediction). Conventional proces-
sors perform store-load ordering speculation. A more aggressive
form of speculation is forwarding speculation in which the pro-
cessor speculates for every load the precise identity of the for-
warding store. Forwarding speculation supports a scalable store
queue which is both age-ordered and non-associative [21], avoiding
the scalability problems of fully-associative designs and the set-
overflow problems of address-indexed ones. Forwarding specula-
tion can be performed with very high accuracy (99.9% for most
programs) because only a small fraction of loads forward, and be-
cause most forwarding behavior is stable and predictable. Forward-
ing prediction schemes that represent store-load dependences as
dynamic store distances [22, 24, 28] mesh with SVW and typically
yield the highest prediction accuracies.

Working Example. Figure 1 shows a working example of SQIP
and SVW. In our notation, data addresses are uppercase letters,
instruction PCs are lowercase letters, SSNs and store distances
are numbers, and data values are irrelevant. The figure uses three
instructions: stores w and x to addresses B and A, followed by
load z to address B. The figure shows four snapshots in time. Each
snapshot shows a ROB (each entry contains a PC), a four entry
load queue on top (each entry contains an address and the SSN
of the predicted forwarding store), a four-entry store queue (each
entry contains an address, the entry’s SSN is implicit), two sets
(corresponding to hashed addresses A and B) of a direct-mapped
SSBF (each entry contains an address tag and and an SSN), and a
one-entry memory dependence predictor (each entry contains a PC
tag and a store distance).

The dynamic instruction stream is tracked by three explicit
global pointers. The position of these pointers in the dynamic store
stream is marked by SSNs. We have already introduced SSNverify.
Stores older than SSNverify have updated the SSBF. They have also
transitioned from the store “queue” to the store “buffer” and cannot
be aborted. The corresponding instruction stream pointer is Pverify.
Loads older than Pverify are verified and cannot be aborted as well.
Global pointer SSNstore−complete (Pstore−complete) tracks the youngest
store to write to the data cache. Global pointer SSNdispatch (Pdispatch)
tracks the youngest dispatched store (instruction).

At T1, (Figure 1a) stores w and y have dispatched (they are older
than SSNdispatch) and executed. Load z dispatches and consults the
memory dependence predictor. There is no matching entry so the
load will only access the data cache. At T2 (Figure 1b) load z ex-
ecutes, calculates its address (B), and reads the cache. Load z is
unaware of older store w to address B because it cannot search the
store queue. Load z records the current value of SSNverify (7)—it is
“vulnerable” to all younger stores (i.e., stores with higher SSNs).
At T3 (Figure 1c), load z is verified; notice stores w and y have
updated the SSBF. Load z reads the SSBF set corresponding to ad-
dress B and finds a store to address B with SSN 8. As load z is only
safe with respect to SSNs ≤ 7, it must re-execute. Re-execution
shows it received the wrong value. Load z is squashed and the
memory dependence predictor is trained to forward from the ap-
propriate store. The distance to the forwarding store is computed
as SSNverify–SSBF[z.addr] (in this case 9–8=1). At T4 (Figure 1),
load z’ (a future instance of load z) predicts a dependence on y’ by
computing SSNdispatch–MDP[z].

Multiprocessor Issues. Processors that verify intra-thread
store-load ordering by snooping the load queue use the same mech-
anism to verify inter-thread store-load ordering. Load queue search
is triggered by invalidation messages and (for directory protocols
and some memory consistency models) local cache evictions as
well. How does SVW track these events and “trip” loads that are
exposed to them? SVW treats events that would require load queue
snooping as “asynchronous stores” from the same thread. It tracks
them using a second SSBF (SSBF-MT) which is organized at a

v y x w v

z.SSN = SSNdispatch – MDP[z]

B

?

89

-

SSNverify (7)SSNdispatch

A
SSN

address

PC

SSN

z

-z

 P
C

 a
d
d
r

AA
BB

MDP

SSBF

read D$

z.SSN = SSNverify

B

B

89

7

SSNverify (7)

A

 a
d
d
r

AA
BB

SSBF

 S
S

N

0
4

 S
S

N

0
4

-

 d
is

t
SSBF[z.addr] > z.SSN → reexec

MDP[z] = SSNverify – SSBF[z.addr]

B

DC B

89

01 7

SSNverify (9)

A

1z

P

C
 a

d
d
r

AA
BB

MDP

SSBF

 S
S

N

9
8

z

 d
is

t

 z’.SSN = SSNdispatch – MDP[z’]

D

?

1617

16

SSNverify (15)SSNdispatch

C

z’

zz

P

C
 a

d
d
r

AA
DB

MDP

SSBF

 S
S

N

9
12

1

 d
is

t

z

(a) T1: dispatch load z (b) T2: execute load z (c) T3: verify load z (d) T4: dispatch load z’

y x w v z y x w y’ x’ w’ v’ROB

address

store
queue

load
queue

-z

P
C

MDP
-

d
is

t

Figure 1. A working example of SVW/SQIP in a ROB processor

cache line granularity. Verifying loads read both the SSBF and
the SSBF-MT and re-execute if they hit in either. When an asyn-
chronous store event occurs, SVW writes SSNverify +1 in the corre-
sponding SSBF-MT entry. The value SSNverify +1 trips all exposed
loads that had not been verified when the event occurred.

A second issue concerns memory consistency models that dis-
allow store buffers, e.g., sequential consistency (SC). SVW can en-
force SC by stalling Pverify at any load if Pverify > Pstore−complete.

3. CPR/CFP Memory Systems

Previously proposed memory systems for CPR/CFP use hierarchi-
cal designs. Small associative load and store queues handle order-
ing and forwarding for the youngest instructions in the window.
Older loads and stores spill to larger secondary structures.

HLQ (Hierarchical Load Queue). The secondary load queue
is address-indexed and set-associative [6]. Set-overflow is handled
either by squashing the incoming load’s checkpoint or by stalling
the load until the oldest checkpoint commits and load queue entries
come free. The disadvantage of HLQ is the performance penalty of
resolving set conflicts, and the cost of over-sizing the load queue to
minimize set conflicts.

HSQ (Hierarchical Store Queue). There are two proposed de-
signs for secondary store queues. The first is a large associative
queue with an access latency that matches that of the L2 [1]. To
avoid accessing the secondary queue on every load—and effec-
tively increasing load latency to L2 latency—the secondary queue
is guarded by an address-indexed Bloom filter (MTB). Load latency
elongates to L2 latency only on an MTB “hit”. The disadvantage of
HSQ is the area and power cost of the secondary queue.

SRL (Store Redo Log). The follow-on design replaces the large
associative store queue with two structures which activate on a last-
level cache miss [6]. While the miss is pending, miss-independent
stores drain into a small forwarding cache [11], supporting forward-
ing to miss-independent loads. In parallel, all stores drain into an
age-ordered Store Redo Log (SRL). When the miss returns, the for-
warding cache is flushed and the miss slice is re-injected into the
window. Miss-dependent stores re-acquire first-level store queue
entries for store-load forwarding within the slice. When they com-
plete, they write their values to their pre-determined positions in the
SRL. When the miss slice completes execution, dispatch at the tail
of the window resumes and the SRL drains to the data cache in pro-
gram order. An address indexed Bloom filter (LCF) supports lim-
ited forwarding from the SRL during the draining process. Loads
that cannot forward using the LCF stall until draining completes.
SRL has both performance and algorithmic complexity disadvan-
tages. Performance-wise, SRL provides a large store queue only in
the shadow of a last-level cache misses and not in the general case.

Complexity-wise, although the SRL, LCF, and forwarding cache
are physically simple, their associated management algorithms—
which are required to detect forwarding violations—are complex.

Initial SVW/SQIP Performance Study. Figure 2 shows IPC
speedup of HLQ/HSQ [1], HLQ/SRL [6]—both with 8-way set-
associative load queues—and two SVW/SQIP memory systems
over a baseline with conventional fully-associative load and store
queues with 64 and 48 entries, respectively. The scalable load
queues (HLQ, SVW) have 512 entries, the scalable store queues
(HSQ, SRL, SQIP) have 256 entries. Table 1 describes the full
configuration in detail.

-10

0

10

20

HLQ/SRLHLQ/HSQ SVW/SQIP-NAIVE SVW/SQIP-TRAIN

art facerec wupw SpecFP bzip2 vortex vpr SpecINT

% Speedup over ASSOC memory system

Figure 2. SVW/SQIP in a CPR/CFP processor

HLQ/HSQ and HLQ/SRL generally have similar performance,
12% speedups on SpecFP and 2% on SpecINT, with occasional
small slow-downs (e.g., vpr). The first-cut SVW/SQIP implementa-
tion is SVW/SQIP-NAIVE. In SpecFP, SVW/SQIP-NAIVE gener-
ally out-performs the existing designs because it provides uniform
low-latency forwarding and conflict-free load tracking. However, in
SpecINT it generally under-performs them. This low performance
is caused not by forwarding mis-speculation, but by SVW’s fre-
quent need to serialize a load-store pair—to force the store to com-
plete and write to the data cache before the load can verify.

The Use of Store-Load Serialization in SVW/SQIP. Even
conventional non-SVW/SQIP processors occasionally need to se-
rialize a store-load pair—the common cases here are a narrow store
followed by a wide load to an overlapping address, or a fence in-
struction. However, the SVW/SQIP combination actively uses seri-
alization to ensure correctness and forward progress.

SVW can verify most loads without re-execution but it does
need to re-execute 1–2% of loads. The use of SQIP would appear
to imply that load re-execution requires an empty store buffer
(the portion of the store structure older than SSNverify) because re-
execution cannot associatively search the store buffer. In actuality,

?

7

B

?

89

7

D
 a

d
d
r

CA
DB

SSBF
 S

S
N

7

9

A

7

Pverify

B

?

89

7

Pstore-complete (7)

C

 a
d
d
r

CA
BB

SSBF

 S
S

N

9

8

A

7

PverifyPstore-complete (7)

x x

(a) Verifiable load (b) Verification “hole”

Figure 3. Store-load serialization in SVW/SQIP

loads can frequently re-execute with a non-empty store buffer.
There are three relevant cases. In the simplest case, the SSBF
contains an entry with a matching address. If the entry’s SSN is
younger than SSNstore−complete, then the correct value is in the store
buffer at the index indicated by that SSN. If the entry’s SSN is
SSNstore−complete or older, the correct value is in the data cache.
Either way, re-execution can proceed without draining the store
buffer. Figure 3 shows the other two cases. In each case, load x
is being verified—its address is A and its forwarding SSN is 7. The
figure shows a direct-mapped SSBF with two sets. In Figure 3a,
the SSBF does not contain an entry with a matching address so
the relevant SSBF entry is the oldest one (in this case only one)
in the corresponding set (SSNssbf−set). The fact that SSNssbf−set ≤

SSNstore−complete unambiguously implies that the store buffer does
not contain an entry with a matching address, and re-execution
can proceed simply by accessing the data cache. In Figure 3b,
again there is no matching address but this time SSNssbf−set >

SSNstore−complete. Here, re-execution cannot immediately proceed
because there may be a conflicting store in the store buffer in the
region between SSNssbf−set and SSNstore−complete. In other words,
the SSBF has a “hole”—there may be a store that has “aged” out of
the SSBF but that is still in the store buffer. Without searching the
store buffer there is no way to know.

Handling Load-Store Serialization in CPR/CFP. In a ROB
(i.e., instruction-granularity) processor, SSBF holes close naturally.
Eventually, enough stores will drain from the store buffer to the data
cache and turn the scenario in Figure 3b into the one in Figure 3a.
However, in CPR/CFP holes do not close naturally if the load and
store reside in the same checkpoint. The load will not re-execute
and verify until the store writes to the cache, the store will not write
to the cache until the checkpoint commits, and the checkpoint will
not commit until all instructions in it execute and all loads verify.
Resolving this stalemate requires squashing the entire checkpoint
and, on the re-execution, creating a second checkpoint immediately
before the load—thereby placing the load and store in two different
checkpoints—in order to avoid a recurrence of the same exact
situation. This is SVW/SQIP-NAIVE’s strategy.

One way to reduce this penalty is to remember the PCs of loads
that experience holes in a small table and to create a checkpoint
whenever a future instance of one of these PCs is renamed. This is
the scheme used in SVW/SQIP-TRAIN and it does improve per-
formance, by 3% on average and by as much as 20% in some
programs (e.g., vortex). However, on certain programs this strategy
turns counter-productive. Benchmarks that consume many check-
points due to poor branch prediction (e.g., vpr) suffer from greedy
checkpoint allocation. Benchmarks that need many registers (e.g.,
art) also suffer, because checkpoints hold registers and delay their
reclamation.

The relative performance of NAIVE and TRAIN suggests that
robust performance requires a serialization mechanism that avoids
both squashing and greedy checkpoint allocation.

4. DSC and SDR

The previous section shows that using SVW/SQIP effectively in
a CPR/CFP context requires a mechanism that gracefully and
cheaply handles store-load serialization. We introduce a pair of
complementary procedures that accomplish this: DSC (Decoupled
Store Completion) and SDR (Silent Deterministic Replay). Tradi-
tional CPR/CFP processors manage both registers and loads and
stores at checkpoint granularity. The combination of DSC/SDR
allows a CPR/CFP processor to continue to manage registers at
checkpoint granularity—retaining the associated efficiency benefits
and non-blocking support—while at the same time managing loads
and stores at the more traditional and familiar instruction granu-
larity. Instruction-granularity handling of stores includes graceful
handling of store-load serialization.

z

8

wxy v u t s r

9 710

Pverify (9)

Preg-chkpt (7)

Pstore-complete (6)

z

wxy v u t s r

910

Pverify (9)

Preg-chkpt (7)

Pstore-complete (8)

(a) CPR/CFP (b) CPR/CFP+DSC/SDR

z z

Figure 4. DSC/SDR overview

4.1 Overview

The key to DSC/SDR is the reassociation of the notion of “com-
mit”, i.e., the guarantee that an instruction will not be rolled
back. CPR/CFP processors traditionally associate commit with the
register-checkpoint pointer, Preg−chkpt—the oldest register check-
point and the oldest point in the program for which register state
can be restored. This association is what gives CPR its “bulk com-
mit” property. In DSC/SDR, we shift the notion of commit to the
verification pointer, Pverify. Figure 4 illustrates this shift and its sig-
nificance. The figure shows only PCs, not addresses and SSNs, so
that we can focus on commit. In Figure 4a, commit is associated
with Preg−chkpt, and the processor must obey Pverify ≥ Preg−chkpt

≥ Pstore−complete; Preg−chkpt ≥ Pstore−complete is necessary because
data cache writes cannot be undone. The fact that Preg−chkpt pro-
ceeds at checkpoint granularity forces store completion to trail the
oldest checkpoint. In Figure 4b, we associate commit with Pverify.
Now the processor must only obey Pverify ≥ Preg−chkpt and Pverify

≥ Pstore−complete individually—it does not need to order Preg−chkpt

and Pstore−complete relative to each other. Here, Pstore−complete (8) has
advanced past Preg−chkpt (7). This is essentially DSC (Decoupled
Store Completion).

Of course, associating commit with Pverify means that “commit-
ted” instructions can physically be rolled back. In fact, according to
our definition, committed instructions will be rolled back whenever
load-verification detects a forwarding violation. This is where SDR
(Silent Deterministic Replay) comes in. SDR makes the rollback
of “committed” instructions transparent to the outside world. SDR
relaxes the intuitive invariant that the oldest register checkpoint,
Preg−chkpt, represents architected register state. With DSC/SDR,
Preg−chkpt can represent state older than architected register state.
SDR incrementally re-constructs architected register state on de-
mand.

B

?

89

7

Pstore-complete (7)

C
 a

d
d
r

CA
BB

SSBF
 S

S
N

9

8

A

7

Pverify

B

?

89

7

Pverify/Pstore-complete (9)

C

 a
d
d
r

CA
BB

SSBF

 S
S

N

9

8

A

7

x x

(a) Verification “hole” (b) DSC closes the “hole”

Figure 5. DSC implements store-load serialization

4.2 DSC (Decoupled Store Completion)

Decoupled Store Completion (DSC) allows stores older than Pverify

to begin writing to the data cache before the enclosing checkpoint
finishes execution. Stores still write to the cache in program order
and Pstore−complete cannot proceed past un-executed branches or un-
verified loads. Like traditional store completion, DSC is permanent
and non-speculative. It does not require a cache that accepts spec-
ulative writes [7]. Completed stores never need to be discarded or
flushed, and their store buffer entries are reclaimed immediately.

DSC’s primary benefit is that it simplifies the implementation
and reduces the cost of store-completion/load-execution serializa-
tion. DSC allows a store-load pair that resides in the same check-
point to be serialized—without having to predict the need for seri-
alization a priori, without squashing, and without consuming addi-
tional checkpoints. Figure 5a repeats the scenario from Figure 3b,
but this time adds DSC. Now verification un-blocks as soon as
SSNstore−complete advances far enough to make the SSNssbf−set ≤

SSNstore−complete condition evaluate positively and allow the load
to re-execute safely by reading the cache (Figure 5b).

Other Benefits. DSC improves performance by closing SSBF
verification holes naturally, without having to squash or to allo-
cate checkpoints greedily. In doing so, it enables the use of smaller,
lower-associativity SSBFs and fewer checkpoints. It also reduces
store buffer occupancy and improves data cache bandwidth utiliza-
tion by smoothing store bursts.

4.3 SDR (Silent Deterministic Replay)

In a CPR/CFP processor, mis-speculation on an un-checkpointed
instruction involves squashing the window past the mis-speculated
instruction to the immediately older checkpoint. Instructions older
than the mis-speculation are re-fetched and re-executed despite
having correctly executed the first time. This “checkpointing over-
head” [1] is illustrated in Figure 6a. Branch w mis-predicts (time
T1, top). Recovery involves squashing to checkpoint C0, clearing
the load and store queues, restoring the SSBF from a checkpoint,
and discarding instructions r–w (T2, middle). Instructions r–w are
subsequently re-fetched and re-executed (T3, bottom).

Associating commit with Pverify means that on an un-checkpointed
mis-speculation, some “committed” instructions may have to be
squashed and re-executed. Re-executing committed instructions is
fine as long as it is done deterministically (i.e., instructions pro-
duce the same values during re-execution as they did during initial
execution) and silently (i.e., the outward appearance is that execu-
tion only takes place once). The seemingly difficult part about this
is replaying committed loads in the presence of DSC. DSC stores
may have overwritten these loads in the cache causing write-after-
read hazard during re-execution. Figure 6b shows this scenario.
Again, branch w mis-predicts (T1, top). And again, load r has to
be squashed and re-executed. However, younger store t has already
over-written r in the data cache—both reference address B.

B

wx v u t s r

(a) Traditional recovery

T2: Flush to C0

Clear SQ/LQ.

Reset Pverify to Preg-chkpt.

Restore SSBF from checkpoint.

T2: Flush to C0

Retain LQ/SQ older than Pverify.

Leave Pverfiy and SSBF intact.

T3: re-execute all instructions

older than Pverify.

T3: don’t re-execute loads and

stores older than Pverify.

Replay loads (t) from LQ.

C

A

C0

B

B

Pverify Preg-chkpt
Pstore-complete (7)

10 9 8

7 7

 a
d
d
r

AA
BB

SSBF

 S
S

N

9
8

C
B
chkpt

6
7

C

C0

B

Pverify =Preg-chkpt = Pstore-complete (7)

6 7

 a
d
d
r

CA
BB

SSBF

 S
S

N

6
7

wa v u t s r

D

A

C0

B

B

Pverify Preg-chkpt (7)

Pstore-complete (7)

9 8

7 7

 a
d
d
r

AA
BB

SSBF

 S
S

N

8
7

wx v u t s r

C

A

C0

B

Pverify Preg-chkpt (7)
9 8

7 7

 a
d
d
r

AA
BB

SSBF

 S
S

N

9
8

Pstore-complete (8)

C

C0

6

Preg-chkpt (7)

Pstore-complete (8)

Pverify

A

B
7

 a
d
d
r

AA
BB

SSBF

 S
S

N

9
8

9

wa v u t s r

D B

9

7 7

 a
d
d
r

AA
BB

SSBF

 S
S

N

9
8

T1: Branch w mispredicts. T1: Branch w mispredicts.

A

Pverify

Pstore-complete (8)

Preg-chkpt (7)

C0

(b) SDR recovery

C

B

chkpt

6

7

C
B
chkpt

6
7

Figure 6. SDR recovery in the presence of DSC

SDR overcomes this potential problem by exploiting the obser-
vation that loads that may be vulnerable to write-after-read hazards
from DSC stores are all older than Pverify—the load queue values
for these loads are known to be correct. SDR uses the portion of
the load queue that is older than Pverify as a log and silently re-
plays committed loads by copying the corresponding values from
the load queue to newly allocated registers.

Unlike conventional recovery, SDR recovery (T2, middle)
leaves Pverify, the SSBF, and the load and store queues untouched.
Instructions r–w are re-fetched as usual (T3, bottom). However,
load r is silently replayed from the load queue, side-stepping the
write-after-read hazard with store t. Stores t and v are discarded at
rename: v is already in the store queue and t is already in the data
cache.

Branch 48 Kbyte 3-table PPM direction predictor. 2K-entry, 4-way set-associative BTB. 32-entry RAS

Pipeline 4-way superscalar with 17 stages: 3 fetch, 2 decode, 1 rename, 1 dispatch, 1 issue, 2 regread, 1 execute, 1 regwrite, 1 SVW, 3 replay, 1

commit. 13 cycle minimum branch misprediction penalty.

Execution 192/192 integer/FP physical registers, 32/32 integer/FP issue queue entries. 4-way issue with up to 4 integer, 2 FP, 2 loads, 1 store, and 1

branch per cycle. 3 Kbyte, 3-table PPM distance-based memory-dependence predictor.

Window 8 checkpoints. 512-entry slice buffer.

Memory 32 Kbyte, 8-way set-associative, 64 byte line, 3-cycle access instruction and data caches, with 8-entry victim buffers. 2 Mbyte, 16-way

set-associative, 64-byte line, 10-cycle access L2 with 8-entry victim buffer. 8 8-entry stream buffers. 400 cycle memory latency to the first

16 bytes, 4 cycles to each additional 16 bytes. 128 outstanding misses.

Load Queue Store Queue

ASSOC 64-entry, fully-associative 48-entry fully-associative (3 cycle)

HLQ/HSQ ASSOC + 512-entry, 8-way set-associative ASSOC + 256-entry, fully-associative/1K-entry MTB (10 cycle)

HLQ/SRL ASSOC + 512-entry, 8-way set-associative ASSOC + 256-entry indexed/1K-entry LCF (3 cycle)

SVW/SQIP 512-entry indexed. 512-entry 4-way set-associative SSBF 256-entry indexed + 24-entry fully-associative (3 cycle)

Table 1. Simulated processor configurations

Other Benefits and Non-Benefits. As shown in Figure 6b, SDR
removes the need to checkpoint and recover the SSBF itself—
because loads older than Pverify are replayed deterministically they
do not have to be re-verified.

DSC allows load queue entries to be reclaimed aggressively but
SDR does not allow load queue entries to be similarly reclaimed.
Load queue entries are not reclaimed until the checkpoint is fully
verified because they may be needed to supply register values
during SDR reocvery.

4.4 Multiprocessor Issues

We have already argued for the multiprocessor safety of SVW/SQIP
(Section 2). The addition of DSC/SDR does not destroy this prop-
erty. The simplest way to see this is using bi-simulation with a ROB
processor. Consider the effect of an invalidation to the cache line
of an “exposed” load. If the CPR processor has verified the load,
then the ROB processor has committed it. The correct value for this
load is the value it has at CPR verification (i.e., the value the ROB
processor commits). SDR guarantees this: because the load has
been verified, it will always produce the same output, without any
externally visible effects. If the load has not been verified when the
invalidation arrives, then the conflict will be detected at verification
and the load will be forced to re-execute.

DSC/SDR preserve coherence. They also simplify the imple-
mentation of different consistency models on CPR. For instance,
they enable a simple, non-speculative implementation of SC. With-
out DSC/SDR, enforcing SC non-speculatively on CPR requires
acquiring the permissions to all the stores in a checkpoint—and
simultaneously tracking external conflicts with all loads—before
committing that checkpoint and draining the stores to the cache.
With DSC/SDR, SC is enforced in the same way as it is on a ROB-
based processor with SVW, i.e., by not allowing Pverify to advance
past a load if it is ahead of Pstore−complete. For weaker memory
models, DSC/SDR allows a CPR processor to correctly implement
fence instructions without creating checkpoints for them.

With or without DSC/SDR, CPR can be made to enforce SC
more efficiently using speculation [2, 5, 27]. By presenting the
memory system with the same instruction-granularity load/store
interface of a traditional ROB processor, DSC/SDR allow consis-
tency model optimizations developed in the ROB context [26] to be
migrated seamlessly to the CPR context.

5. Evaluation

This paper primarily addresses single-thread performance and ef-
ficiency issues, so our evaluation uses the SPEC2000 benchmarks.
The benchmarks are compiled for the Alpha AXP ISA at optimiza-

tion level -O4. They execute to completion on their training inputs
with 2% periodic sampling with 4 million instructions of warmup
and 1 million instructions sampled per period. Our infrastructure
cannot execute benchmarks fma3d and sixtrack.

Our timing simulator models CPR/CFP processors with non-
blocking caches, stream-buffer prefetching, and realistic bus inter-
connect. It models both associative and non-associative, flat and
hierarchical load and store queues. Table 1 describes our configu-
rations in detail.

Distance-Based PPM-style Forwarding Predictor. Our use of
SQIP mandates a forwarding predictor that delivers high accuracies
at large window sizes. We use a distance-based forwarding predic-
tor that resembles a tagged PPM (prediction by partial matching)
branch predictor [10]. It consists of 3 tables each of which is in-
dexed by a hash of the PC and an increasingly longer global path
history postfix. A load uses the prediction of the matching entry
from the table indexed by the longest history.

Both HSQ and SRL use a small, fully-associative queue in con-
junction with a larger queue. SQIP/PPM can optionally use a small
associative store queue to reduce the burden on the forwarding pre-
dictor by handling the common forwarding cases without predic-
tion. The associative store queue holds the youngest stores in the
window and is accessed in parallel with the large indexed store
queue. Our default configuration uses a 24-entry associative helper
store queue.

5.1 Comparative Performance

Figure 7 shows percent speedup over a baseline CPR/CFP proces-
sor with the ASSOC data memory configuration (fully-associative
64/48-entry load/store queues). This baseline performs like a ROB
machine—the small load and store queues restrict the window—yet
factors out the characteristics of the checkpoint substrate, allowing
us to compare the data memory systems.

We show four designs—HLQ/HSQ [1] and HLQ/SRL [6] with
8-way set-associative HLQs, SVW/SQIP-TRAIN (Section 3), and
SVW/SQIP+DSC/SDR. All configurations use the same 3 Kbyte
PPM store-load dependence predictor: HSQ and SRL use it for
load scheduling only, SQIP uses it for unified scheduling and for-
warding. Using smaller scheduling predictors for HSQ and SRL
reduces performance by up to 9% (1–2% on average). The main
result of this experiment is that the addition of DSC/SDR boosts
the average performance of SVW/SQIP by 3% on SpecFP and
by 5% on SpecINT. This boost allows SVW/SQIP to match or
exceed the performance of either previous design on all but
two benchmarks. On SpecFP, SVW/SQIP+DSC/SDR produces
speedups of 24% while HLQ/HSQ and HLQ/SRL only produce

0

10

20

30

8SA-HLQ/SRL

8SA-HLQ/HSQ

SVW/SQIP + DSC/SDR

SVW/SQIP-TRAIN

4
7

-2

4
6

5
3

7
1

5
7

7
7

0.54 1.22 1.69 0.44 0.87 1.46 2.65 2.46 3.14 2.59 1.54 2.49
ammp applu apsi art equake facerec galgel lucas mesa mgrid swim wupw SpecFP

% Speedup over ASSOC memory system

0

10

20

 -
1
0

-4

 -
1
1

-4

-3

-6

1.93 2.35 2.58 1.38 1.67 1.96 0.10 1.07 1.90 1.58 2.21 0.71
bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr SpecINT

Figure 7. Comparative performance for four data memory system designs

12%. On SpecINT, it produces 6% speedups, compared to 2% for
the others.

SVW/SQIP+DSC/SDR under-performs SRL on two programs.
galgel has suffers from checkpoint overhead due to mis-predicted
branches [1]. SRL avoids checkpoint overhead because its large
store queue doesn’t active during these periods, artificially restrict-
ing the window. vortex has difficult to predict forwarding patterns.

5.2 Performance Analysis

SVW/SQIP+DSC/SDR differs from previous schemes in three
ways: the load queue (SVW+DSC/SDR vs. HLQ), the store queue
(SQIP+PPM vs. HSQ vs. SRL), and the secondary benefits of DSC.

Load Queue Effects. The largest performance effects are asso-
ciated with the load queue. The top graph in Figure 8 shows the per-
formance of different load queue designs. To factor out store queue
effects, we couple all load queues with an idealized, flat, 256-entry,
3-cycle associative store queue. We cannot couple all load queues
with SQIP because only an SVW load queue can verify SQIP.
From left, the bars correspond to 1K-entry (4-way and 8-way) set-
associative HLQs, a 512-entry fully-associative HLQ, a 512-entry
SVW load queue, and the same enhanced with DSC/SDR.

The performance differences between the set-associative and
fully-associative load queues illustrate the large penalty of set-
conflicts, which are typically resolved by stalling a load attempting
to “enter” a full set. Stalling a load can reduce MLP and degrade
performance. The effect can be direct—the load or a dependent
misses the last-level cache—or indirect—the load holds resources
which prevent other loads from entering the window. With an 8-
way set-associative HLQ, equake has an MLP of 2.4, with 1.5
loads stalling due to set-conflicts under each miss, and a speedup
of 16%. With a fully-associative load queue, it has MLP of 6.8 and
a speedup of 78%.

Replacing fully-associative search with SVW reduces perfor-
mance, on average by about 3%, but sometimes more significantly
(e.g., vpr). One effect is that SVW delays the detection of load
violations from store execution to load verification. When mem-
ory dependence prediction accuracy is (relatively) low, these de-
lays can become significant. Mis-speculations that occur under a

last-level cache miss and won’t be resolved until the miss returns
can be especially harmful. A second effect is that without DSC,
SVW must squash and restart entire checkpoints to resolve verifi-
cation “holes”. The primary result here are that with these disad-
vantages, SVW provides performance that is competitive with
realistic set-associative HLQs. With DSC/SDR, SVW actually
out-performs fully-associative load queues.

Store Queue Effects. The bottom graph of Figure 8 uses a 512-
entry SVW+DSC/SDR load queue to compare the performance of
different 256-entry store queues—HSQ, SRL, and SQIP/PPM both
without and with a 24-entry fully-associative helper. We also com-
pare with two idealized configurations—a 3-cycle HSQ and a 3-
cycle ORACLE store queue. ORACLE outperforms HSQ because
it has perfect load scheduling.

HSQ provides high forwarding accuracy as loads can associa-
tively search the entire store queue. Loads that forward from the
second-level store queue (or even loads that alias in the MTB) do
so at a higher latency. However, the out-of-order window can eas-
ily hide this latency as evidenced by the fact that the 10-cycle HSQ
generally has performance close to the (idealized) 3-cycle HSQ.

SRL avoids searching a large secondary queue. However, it ex-
pands the store queue only under a last-level cache miss whereas
programs can still benefit from a large store queue even in the ab-
sence of last-level cache misses. SRL restricts the performance of
programs (e.g., mesa and gap) that benefit from larger windows by
virtue of having many data cache misses—store or load—or other-
wise low ILP. SRL was proposed as a low-complexity alternative to
HSQ, but the complexity of SQIP/PPM is even lower. SQIP/PPM
doesn’t require accessing another structure in series with the large
indexed store queue, whereas SRL requires serial Bloom Filter-
store queue access. If store queue size is limited by access latency
(i.e., data cache latency), SQIP may support a larger store queue
than SRL. Our simulations do not penalize SRL for Bloom-filter
access latency.

The main result here is that with the small helper associative
store queue, SQIP/PPM matches the performance of the more
complex SRL design, and only slightly under-performs the sig-
nificantly larger HSQ. The associative helper store queue makes

0

10

20

30
1K-entry 8SA HLQ
1K-entry 4SA HLQ

512-entry FA LQ 512-entry SVW LQ 512-entry SVW LQ + DSC/SDR

-1
2

-6

% Speedup over 64-entry, FA load queueLoad Queue Effects

0

10

20

30
3-cycle HSQ
10-cycle HSQ

3-cycle SRL 3-cycle SQIP/PPM + 24-entry 3-cycle FA "helper"
3-cycle SQIP/PPM 3-cycle ORACLE

ammp facerec mesa swim wupw SpecFP bzip2 eon gap vortex vpr SpecINT

% Speedup over 48-entry, FA store queueStore Queue Effects

Figure 8. Load and store queue Effects

0

10

20

30
+ DSC/SDR

256-entry, 2SA

+ DSC/SDR

512-entry, 4SA

+ DSC/SDR

1K-entry, 8SA

-8

-6

-1

SSBF % Speedup over ASSOC

0

10

20

30
+ DSC/SDR

4

+ DSC/SDR

8

+ DSC/SDR

16

 -
1
3

-2

-4

ammp mesa wupw SpecFP bzip2 vortex vpr SpecINT

Checkpoints % Speedup over ASSOC

Figure 9. DSC benefit sensitivity analysis

a large difference, especially for SpecINT. We experimented with
larger helper queues but the slight increase in performance does not
justify the added area. SQIP/PPM performs within 3% of an ORA-
CLE store queue because forwarding prediction accuracy exceeds
99.9% for all but two benchmarks.

DSC Sensitivity Analysis. DSC enables SVW/SQIP to work
efficiently in a checkpoint substrate by streamlining instances of
store-load serialization. This allows the use of small SSBFs and
fewer checkpoints. Figure 9 explores the sensitivity of SVW/SQIP—
both with and without DSC/SDR—to SSBF configuration (top) and
checkpoint count (bottom).

Smaller, lower-associativity SSBFs produce more “holes”.
Without DSC, SVW/SQIP is quite sensitive to SSBF associativ-

ity. Our default SSBF has 512 entries and is 4-way set-associative,
a configuration that produces a low re-execution rate, but does
suffer from holes. DSC makes SVW/SQIP virtually insensitive to
SSBF configuration. In fact, with DSC higher-associativity SSBFs
can actually reduce performance. With DSC, there is no need to
force periodic checkpoints in order to serialize store-load pairs al-
lowing checkpoints to grow large. Mis-speculations within larger
checkpoints can squash larger numbers of instructions.

With 8 register checkpoints, DSC provides significant benefit.
Its benefit decreases as the number of checkpoints grows and in-
dividual checkpoints become cheaper. However, CPR/CFP register
checkpoints are expensive—in addition to the map table cost [19],
there is also the cost of reference counting hardware [18]. CPR/CFP
checkpoints hold physical registers. If physical registers are a crit-
ical resource, additional checkpoints may cause dispatch delays
(e.g., vortex). A significant benefit of DSC/SDR is that they enable
good performance with fewer checkpoints.

5.3 Performance-Area Trade-Offs

We use CACTI-4 [25] to estimate the area, in 45nm technol-
ogy, of different memory system components and to conduct a
performance-area analysis. Table 2 lists the area (in mm2) of dif-
ferent memory components: load queues, store queues, as well as
the ancillary structures SSBF, PPM (memory dependence predic-
tor), MTB, and LCF (HSQ and SRL Bloom filters). SRL’s 256-
entry 4-way set-associative forwarding cache (0.069 mm2) and
SVW/SQIP-TRAIN’s load-checkpoint table (0.017 mm2) are not
shown The table shows some intuitive relationships, e.g., fully-
associative structures are larger than set-associative and direct-
mapped structures with the same number of entries. Other relation-
ships deserve additional explanation. For instance, an SVW-style
load queue is over twice as large as a set-associative load queue
with the same number of entries. There are two reasons for this.
First, each SVW load queue entry is bigger because it contains
a full address plus value and SSN. Second, a conventional load
queue only needs to allow two writes (load execution) and one read
(store execution) per cycle, but an SVW load queue supports two
writes (load execution) and two reads (load verification). A second
read port can be avoided by exploiting the fact that in-order ver-
ification allows the load queue to be interleaved, but there is still

Entries 64 128 256 512 1K

Load Queue

FA 0.092 0.187 0.302 0.625 1.325
4SA 0.021 0.026 0.038 0.059 0.104
8SA 0.026 0.034 0.044 0.064 0.107
SVW 0.033 0.047 0.099 0.138 0.244

Entries 24 48 128 256 512

Store Queue
FA 0.093 0.152 0.355 0.546 1.145
SQIP 0.028 0.035 0.066 0.102 0.189

Entries 64 128 256 512 1K
SSBF 4SA 0.024 0.030 0.043 0.067 0.121
SSBF+Chk 4SA 0.044 0.055 0.079 0.121 0.223
SSBF-MT DM 0.016 0.022 0.036 0.061 0.110

Entries 256 512 1K 1.5K 2K
PPM 4SA 0.012 0.020 0.028 0.036 0.044
MTB DM 0.009 0.014 0.024 0.036 0.043
LCF DM 0.012 0.021 0.036 0.046 0.065

Table 2. Data memory component area (mm2).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

15

SVW/SQIP + DSC/SDR

8SA-HLQ/HSQ FA-LQ/HSQ

8SA-HLQ/SRL FA-LQ/SRL

SVW/SQIP-TRAIN

ASSOC

% Speedup over ASSOC vs. Memory-System Area

512/256+24

512/256 1K/256

256/128

("budget")

Figure 10. Performace-area trade-offs.

some area overhead. Fully-associative store queues are also larger
than fully-associative load queues with the same number of entries.
Each entry is larger having to hold both an address and a value, the
store queue has two associative ports (for two loads executed per
cycle) whereas the load queue has only one (for one store executed
per cycle), and the store queue needs an additional read port in or-
der to write stores to the cache. The area for a design is computed
as the sum of the areas of its components. For instance, our pro-
posed SVW/SQIP+DSC/SDR design includes the components in
bold and occupies approximately 0.46 mm2. For comparison, one
Core2 processor occupies about 25 mm2 in 45nm process.

Figure 10 plots the geometric mean speedup (for all programs)
over the baseline ASSOC memory system against memory system
area. There are seven different kinds of marks on the graph, each for
a different class of design. Within each class, there is a curve that
proceeds from low-area, low-performance configurations on the
lower left, to high-area, high-performance ones on the upper right.
Better designs are found on the upper left (i.e., high-performance,
low-area) part of the graph. We experimented with many config-
urations for each design class, but show only configurations that
would lay on this curve—a configuration is not shown if another in
its class gives better performance with lower area. The baseline AS-
SOC design (triangle) occupies 0.28 mm2. We experimented with
smaller queues, but saw sharp slowdowns.

As expected, the SVW/SQIP+DSC/SDR curve (black dia-
monds) occupies the upper left portion the graph. With DSC/SDR,
SVW/SQIP meets and even exceeds the performance of the
most aggressive hierarchical designs, and does so using less
area. The hierarchical designs that achieve similar performance
use fully-associative load queues (light gray squares and circles,
respectively)—and these use significantly more area. SRL designs
with set-associative load queues have area budgets close to those
of SVW/SQIP, but also provide less performance.

One of the SVW/SQIP+DSC/SDR design points has nearly the
same area (0.29 mm2) as the baseline ASSOC system and outper-
forms it by 11%. This “budget” SVW/SQIP design point drops the
24-entry helper store queue. While it has the overhead for an SSBF
and its 256-entry load queue occupies slightly more area than the
baseline’s 64 associative load queue, its 128-entry indexed store
queue occupies significantly less area than the baseline’s 48 en-
try associative store queue. The budget design illustrates the key
to SVW/SQIP’s superior performance-area tradeoff. Most of the
performance advantage comes from replacing the set-associative
load queue with a flat SVW load queue—plus DSC/SDR. In fact,
some area is sacrificed in this transition. However, this area is eas-
ily recouped because SVW enables SQIP. While replacing a hier-
archical store queue with a SQIP store queue does not gain much
performance—in fact a little performance may be lost—the area
gains are significant. An SVW load queue has a large performance
advantage and a small area overhead. A SQIP store queue has a
large area advantage and a small performance overhead. SVW and
SQIP offset each other’s overheads such that combination has large
performance and area advantages.

6. Other Related Work

Un-ordered Load and Store Queues. Un-ordered late-binding
load-store queues [20] scale by excluding un-executed loads and
stores. Late-binding queues can also be address-banked to scale
both capacity and bandwidth. Late-binding queues are a poor fit
for CPR/CFP. CPR/CFP requires a large window primarily under a
last-level cache miss when most store and load addresses are known
and require queue entries. At the same time, CPR/CFP does not
take advantage of the bandwidth scaling properties of late-binding
queues.

Latency-Tolerant Processors. D-KIP [14] is a non-blocking
design that uses a ROB and architectural register file multi-
checkpointing. SVW/SQIP can work with D-KIP as well. D-
KIP doesn’t need DSC/SDR to implement store-load serializa-
tion because the out-of-order core operates at instruction gran-
ularity. DSC/SDR can still be used to simplify and streamline
multi-processor operation. DSC/SDR can also simplify the multi-
processor operations of latency-tolerant in-order processors like
iCFP [8]. DSC/SDR are centralized schemes but can be adapted
for use in distributed checkpoint-based architectures [13].

Early Retirement. Checkpoints created post-execution can be
used to implement a form of “early retirement” that supports ag-
gressive resource reclamation [9] and (to a lesser degree) load la-
tency tolerance [4]. This style of architecture does not require scal-
able load and store queues.

Speculative Retirement. DSC/SDR are related to, but different
from, speculative retirement [7, 15]. The latter speculatively drains
instructions from the window in the shadow of store misses. DSC
non-speculatively drains stores to the cache in order to efficiently
implement store-load serialization in a CPR/CFP processor.

Deterministic Replay using Load Values. Bugnet uses check-
pointing and determinstic replay from load value logs at the ar-
chitecture level to reconstruct execution traces for multi-threaded
program debugging [12].

7. Conclusions

CPR/CFP processors require in-flight memory-systems that track
large numbers of loads and stores efficiently. SVW and SQIP sup-
port scalable load and store queues, respectively. However, they
don’t work efficiently in a CPR/CFP processor, largely because
they rely on the ability to complete selected stores before the en-
closing checkpoint finishes execution.

We present two complementary mechanisms that implement
instruction-granularity store completion in a CPR/CFP processor.
DSC (Decoupled Store Completion) allows stores to write to the
cache before the enclosing checkpoint finishes execution. SDR
(Silent Deterministic Replay) implements checkpoint granular-
ity mis-speculation recovery in the presence of DSC. Together,
DSC/SDR make the store interface of a checkpoint processor
identical to that of a traditional ROB processor. This simplifies
the design, reduces implementation cost, and improves perfor-
mance. DSC/SDR make SVW/SQIP performance-competitive with
previously-proposed designs. Combined with SVW/SQIP’s area
advantages, this results in significantly improved performance-area
efficiency.

8. Acknowledgments

We thank the reviewers for their comments. This work was sup-
ported by NSF grant CCF-0541292 and by a grant from the Intel
Research Council. Andrew Hilton was partially supported by a fel-
lowship from the University of Pennsylvania Center for Teaching
and Learning.

References
[1] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Pro-

cessing and Recovery: Towards Scalable Large Instruction
Window Processors. In Proc. 36th Intl. Symp. on Microarchi-
tecture, pages 423–434, Dec. 2003.

[2] C. Blundell, M. Martin, and T. Wenisch. InvisiFence:
Performance-Transparent Memory Ordering in Conventional
Multiprocessors. In Proc. 36th Intl. Symp. on Computer
Architecture, Jun. 2009.

[3] H. Cain and M. Lipasti. Memory Ordering: A Value
Based Definition. In Proc. 31st Intl. Symp. on Computer
Architecture, pages 90–101, Jun. 2004.

[4] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas. CAVA:
Hiding L2 Cache Misses with Checkpoint-Assisted Value
Prediction. IEEE Computer Architecture Letters, 3(1), Dec.
2004.

[5] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk Enforcement of Sequential Consistency. In Proc. 34th
Intl. Symp. on Computer Architecture, pages 278–289, Jun.
2007.

[6] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and
K. Lai. Scalable Load and Store Processing in Latency
Tolerant Processors. In Proc. 32nd Intl. Symp. on Computer
Architecture, pages 446–457, Jun. 2005.

[7] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC?
In Proc. 26th Intl. Symp. on Computer Architecture, pages
162–171, May 1999.

[8] A. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating All-
Level Cache Misses in In-Order Pipelines. In Proc. 15th Intl.
Symp. on High Performance Computer Architecture, pages
431–442, Feb. 2009.

[9] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Tor-
rellas. Cherry: Checkpointed Early Resource Recycling in
Out-of-Order Microprocessors. In Proc. 35th Intl. Symp. on
Microarchitecture, Nov. 2002.

[10] P. Michaud. A PPM-like, Tag-Based Branch Predictor.
Journal of Instruction Level Parallelism, 7(1):1–10, Apr.

2005.

[11] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead
Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors. In Proc. 9th Intl. Symp. on High
Performance Computer Architecture, pages 129–140, Feb.
2003.

[12] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously Recording Program Execution for Deterministic
Replay Debugging. In Proc. 32nd Intl. Symp. on Computer
Architecture, pages 284–295, Jun. 2005.

[13] M. Pericas, A. Cristal, F. Cazorla, R. Gonzalez, D. Jimenez,
and M. Valero. A Flexible Heterogeneous Multi-Core Archi-
tecture. In Proc. 12th Intl. Conf. on Parallel Architectures and
Compilation Techniques, Sep. 2007.

[14] M. Pericas, R. Gonzalez, D. Jimenez, and M. Valero. A
Decoupled KILO-Instruction Processor. In Proc. 12th Intl.
Symp. on High Performance Computer Architecture, pages
53–64, Feb. 2006.

[15] P. Ranganathan, V. Pai, and S. Adve. Using Speculative
Retirement and Larger Instruction Windows to Narrow the
Performance Gap Between Memory Consistency Models. In
Proc. 7th Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pages 199–210, Oct.
1996.

[16] A. Roth. Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load Optimization. In Proc. 32nd Intl.
Symp. on Computer Architecture, pages 458–468, Jun. 2005.

[17] A. Roth. Store Vulnerability Window (SVW): A Filter and
Potential Replacement for Load Re-Execution. Journal of In-
struction Level Parallelism, 8, 2006. (http://www.jilp.org/vol8/).

[18] A. Roth. Physical Register Reference Counting. Computer
Architecture Letters, 7(1), Jan. 2008.

[19] E. Safi, P. Akl, A. Moshovos, A. Veneris, and A. Arapoyianni.
On The Latency, Energy, and Area of Checkpointed, Super-
scalar Register Alias Tables. In Proc. 2007 Intl. Symp. on
Low-Power Electronics and Design, Aug. 2007.

[20] S. Sethumadhavan, F. Roesner, J. Emer, D. Burger, and
S. Keckler. Late-Binding: Enabling Unordered Load-Store
Queues. In Proc. 34th Int’l Symposium on Computer
Architecture, pages 347–357, Jun. 2007.

[21] T. Sha, M. Martin, and A. Roth. Scalable Store-Load
Forwarding via Store Queue Index Prediction. In Proc. 38th
Intl. Symp. on Microarchitecture, pages 159–170, Nov. 2005.

[22] T. Sha, M. Martin, and A. Roth. NoSQ: Store-Load
Communication without a Store Queue. In Proc. 39th Intl.
Symp. on Microarchitecture, pages 285–296, Dec. 2006.

[23] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton. Continual Flow Pipelines. In Proc. 11th Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pages 107–119, Oct. 2004.

[24] S. Subramaniam and G. Loh. Fire and Forget: Load/Store
Scheduling with No Store Queue at All. In Proc. 39th Intl.
Symp. on Microarchitecture, Dec. 2006.

[25] D. Tarjan, S. Thoziyoor, and N. Jouppi. CACTI 4.0. Technical
Report HPL-2006-86, Hewlett-Packard Labs Technical
Report, Jun. 2006.

[26] C. von Praun, H. Cain, J.-D. Choi, and K. Ryu. Conditional
Memory Ordering. In Proc. 33rd Intl. Symp. on Computer
Architecture, pages 141–152, Jun. 2006.

[27] T. Wenisch, A. Ailmaki, and B. Falsafi. Mechanisms for
Store-wait–free Multiprocessors. In Proc. 34th Intl. Symp. on
Computer Architecture, pages 266–277, Jun. 2007.

[28] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation
Techniques for Improving Load-Related Instruction Schedul-
ing. In Proc. 26th Intl. Symp. on Computer Architecture,
pages 42–53, May 1999.

