
ACID, CAP, No NewSQL

A 30k overview of distributed databases
Vlad Petric

Single-system databases

Most are relational databases

A well-understood problem

● Formalized in the 90s
● Great implementations in the 2000s, including Free

Software (MySQL, Postgres, etc.)
● Work really well, up to some limits

ACID + SQL

ACID

A - atomicity

C - consistency

I - isolation

D - durability

Do we really need 4 letters?

SQL

● Decent query language, based on relational algebra

● Allows non-programmers to write complex queries
○ Filtering
○ Joins
○ Aggregates

● Reasonably well-behaved - e.g., guaranteed polynomial
time

Limitations of ACID SQL databases

Hard to scale beyond several systems

● Neither ACID, nor SQL scale well

However, single computer systems scaled well between 1990
and present

● Faster processors (cores), more cores
● Faster memory, higher capacity memory
● Faster storage, higher capacity storage (spinning drives,

then solid state)

Then came Big Data ...

We need a database to store an entire web
crawl …

We need a database to for all our users’
(>100M) clicks …

Ad-hoc scaling of single-system databases

First solution - ad-hoc scaling

● Partition large tables based on keys
● Distribute onto multiple servers

But:

● No real ACID across multiple nodes
● Can’t query easily across nodes
● What if a node fails? ...

Remainder of talk

Introduction

Distributed databases

● Wish list
● Fundamental limitations: CAP theorem

Real distributed database systems

Conclusions

Shameless plug

What would we like from a distributed database?

Everything from single-system database

● ACID, SQL

Scalability

● Quantity of data
● Read/Write/Complex query bandwidth should scale with the

number of systems

Fault Tolerance

● System should hide node failures, network failures;

Meet the CAP theorem

CAP (Eric Brewer):

● Consistency

● Availability

● Partition Tolerance

Meet the CAP theorem

CAP:

● Consistency: reads receive the most recent value
○ Once you write something, everyone reads it

● CAP Consistency vs ACID C/I/D (Definitions matter!)

Meet the CAP theorem

CAP:

● Availability: every request receives a non-error response
○ Writes are always accepted
○ Reads see a value (doesn’t necessarily have to be the latest)

Meet the CAP theorem

CAP:

● Partition tolerance - system tolerates an arbitrary
number of nodes disconnected from the rest of the system
(nodes can’t talk to each other)

CAP Theorem - at most 2 out of 3

Consistent and Available => not Partition tolerant

Consistent and Partition tolerant => not Available

Available and Partition tolerant => not Consistent

CAP Theorem - in practice

In a distributed system
● Network issues

○ Misconfigurations
○ Power, cooling issues

● JVM stop-the-world garbage collection
● Single node failures

P happens!

When P happens - Availability or Consistency?

Distributed database; e.g. A - inventory of book “1984”

CAP Sketch of proof (1)

Client 1 Write acceptor
Initial value of A: 1

Read acceptor:
Initial value of A: 1

Set value A to 0

Client 2
Reads A

Distributed database; e.g. A - inventory of book “1984”

CAP Sketch of proof (1)

Client 1 Write acceptor
Initial value of A: 1

Read acceptor:
Initial value of A: 1

Set value A to 0

Client 2
Reads A

Good situation:

● Client 1 writes A:0
● Writer changes A:0, and propagates value to the RA
● Client 2 reads A:0

CAP Sketch of proof (2)

Client 1 Write acceptor
value of A: 0

Read acceptor:
value of A: 0

Set value A to 0

Client 2
Reads A

Inconsistent value:

● Client 1 writes A:0
● Client 2 immediately reads A: 1

CAP Sketch of proof (3)

Client 1 Write acceptor
value of A: 0

Read acceptor:
value of A: 1

Set value A to 0

Client 2
Reads A

Getting consistency:

● Don’t finish the write until the read acceptor also has
the most up to date value

CAP Sketch of proof (4)

Client 1 Write acceptor
value of A: 0

Read acceptor:
value of A: 0

Set value A to 0

Client 2
Reads A

But what if the connection between W/R is severed?

CAP Sketch of proof (5)

Client 1 Write acceptor
value of A:

Read acceptor:
value of A:

Set value A to 0

Client 2
Reads A

But what if the connection between W/R is severed?

● Pretend that doesn’t happen … not partition tolerant!

CAP Sketch of proof (6)

Client 1 Write acceptor
value of A: 1

Read acceptor:
value of A: 1

Set value A to 0

Client 2
Reads A

But what if the connection between W/R is severed?

● Accept on writer, don’t propagate - not consistent!

CAP Sketch of proof (7)

Client 1 Write acceptor
value of A: 0

Read acceptor:
value of A: 1

Set value A to 0

Client 2
Reads A

But what if the connection between W/R is severed?

● Fail the write - not available!

CAP Sketch of proof (8)

Client 1 Write acceptor
value of A: 1

Read acceptor:
value of A: 1

Set value A to 0

Client 2
Reads A

Common issues/misconceptions about CAP

● Only applies with the strict definitions of C, A, and P
○ ACID C != CAP C
○ Oftentimes you don’t need strict C

■ No need to “completely” give up C or A

● Nothing about performance (throughput, latency)

Common issues/misconceptions about CAP (2)

● No guarantee that you do get two out of the three.
○ Don’t trust the marketing department!
○ Keepin’ It Honest: http://jepsen.io/

● Even single node DB with remote clients can have CAPs.
○ Almost everything is a distributed system.

http://jepsen.io/

Remainder of talk

Introduction

Distributed databases

Real distributed database systems

● C trade-offs
● Existing Databases

Conclusions

Shameless plug

Consistency Levels

Strict serializability (1) - equivalent to C in CAP

Every write is seen immediately in the system.

Implies a total ordering of operations, reads and writes,
based on time.

Consistency Levels

Serializable (2)

There is a total ordering of operations

● Execution corresponds to some serial order of operations
● … but not completely based on time.

Consistency Levels

Serializable (2)

The following writes happen in order: X, Y, Z

● Y happens after X, Z happens after Y

What will readers see? One of the following:

● Nothing
● X
● X, Y
● X, Y, Z

Consistency Levels

Eventual consistency (3)

If you stop writing, replicas converge

May not seem like much, but still offers a degree of
consistency

Consistency Levels

Application-defined consistency

● If there is a conflict, the application specifies logic
to handle conflicts

● Rarely used, as nobody likes to write conflict resolution
logic.

● Primarily used in ad-hoc distributed databases.

● Excellent performance

Consistency Recap

Strict Serializable

Serializable

Eventually Consistent

Application-defined

Important reminder - this is a 30k feet view!

● Many variants and intermediate levels.

Strictly serializable systems

Apache Zookeeper, Google Chubby

● Distributed lock service, master election

● Look like a filesystem (hierarchical namespace)

● Can store small pieces of data as well (KiB, not GiB)

● Not suitable to high-throughput

Strict serializable systems

Zookeeper, Google Chubby

● Use N replicas
○ Every write goes to at least round up(N/2 + 1) replicas
○ Generally, odd number of replicas

● Consensus algorithm
○ Replicas agree to the order of all writes

● Reads:
○ For strict serializable, read from round up(N/2 + 1)
○ For serializable, read from a single replica

Strict serializable systems - partition example

5 replicas

P1: A, B, C split from
P2: D, E

Write to P1, P2?

Read from P1, P2?

Strict Serializable / Serializable systems

Google Spanner, CochroachDB, VoltDB

● Strict serializable as long as clocks synchronized
○ Tens of milliseconds of drift

● Serializable otherwise

● “Wait out the drift”
○ Spanner: wait on write side
○ CochroachDB: wait on read side

Strict Serializable / Serializable systems

3rd party testing was critical

● Jepsen found serialization bugs in both CochroachDB and
VoltDB, subsequently fixed

CochroachDB, VoltDB - SQL subset

● Including joins!
● NoSQL became NewSQL

Eventual consistency systems

E.g., Cassandra, Big Table, Aerospike

● Any replica may accept writes.

● In case of conflict, timestamp determines who wins.

● Ordering only happens on conflict resolution

Why use eventual consistency systems?

High Throughput, Low Latency

● Easily an order of magnitude better than (strict)
sequential system

High Availability of Entire system

● Not the same as CAP availability (binary property)

But … you need to be able to deal with replication delay

Some of the things I didn’t talk about

PACELC (Pass Elk) - CAP++

● Under normal operation (no P), latency vs consistency

● When P: availability vs consistency

Some of the things I didn’t talk about

● What is this database suitable for?
○ Size/structure of keys/data
○ Read/Write mix

● How easy is it to manage?
○ Cassandra - easily add a replica
○ Zookeeper - need to restart whole system

● How easy is it to program?

● Special features
○ E.g., time-ordered database

Conclusions

● Definitions and Names matter

● Distributed implies complex

● Don’t trust the marketing department

● Choosing a distributed database means understanding
trade-offs

● This is barely the beginning

Time for the shameless plug

About myself:

● Full name is Vlad Petric (not Vladimir), and I come from
Transylvania (part of Romania).

● If you Google me, I’m not the bodybuilder

● System Architect at Cubist Systematic Strategies

I am the author of Akro, a C++ build system with automated
dependency tracking

https://github.com/vladpetric/akro

Build C++ projects with <= 3 lines of specification:

$COMPILE_FLAGS = "-std=c++1y" # optional

$ADDITIONAL_LINK_FLAGS = "-ltcmalloc_and_profiler" # optional

add_binary path: "homework/homework1.exe" # optional as well

Time for the shameless plug (2)

https://github.com/vladpetric/akro
https://github.com/vladpetric/akro

Thank you!

