
Andrew Hilton / Duke ECE

Engineering Robust Server
Software

Server Software

Andrew Hilton / Duke ECE

Servers Software
• Servers accept requests from clients

• Exchange information (take requests, give responses)

• Generally do much of the "computing"

• We'll start with two example categories

• Unix Daemons (sshd, httpd, …)

• Server side code in websites (Django)

• So what is so special about server software?

• Why is it different enough to be in the course title?

Andrew Hilton / Duke ECE

Most Code You Have Written
• Run on input, get output

• Then done

• Error?

• Print message and exit

• Run by you

• Trusts user

• On one computer…

• Deals with one input at a time

• Serial code

• Don't care about performance

Andrew Hilton / Duke ECE

Servers: Different

• Run "forever"

• Implications of this?

while (true) {
 ……

}

Andrew Hilton / Duke ECE

Run Forever
• Resource (memory, file descriptors,…) Leaks: Unacceptable

• Restart Chrome every week b/c memory leak? Annoying

• Restart Google every 5 minutes b/c memory leak? No way..

• Then again…

• DukeHub has a memory leak

• Solution: restart every so many requests.

• But you all are pros at writing leak-free code

Andrew Hilton / Duke ECE

Run Forever
• How to handle errors?

• abort? No way.

• Report and keep going

• Need to keep handling other requests

• Log: (Advice from friends in industry: log everything!)

• Nobody is watching terminal.

• Want admins to know? Need log files (/var/log/…)

• Inform user

• Send (informative?) error response

Andrew Hilton / Duke ECE

Maybe more complex?

• Many server systems: more complex

• Introduce more complexities in terms of running "forever"

Andrew Hilton / Duke ECE

Three Tier System

3. Storage Tier
2. Application Tier
(Business Logic)

1. Presentation Tier

Andrew Hilton / Duke ECE

Maybe more complex?

• Maybe we want to upgrade v1.0 to v2.0

• Now have v1.0 and v2.0 running at same time: difficulties?

Andrew Hilton / Duke ECE

What if we just shut everything down?

• Couldn't we just shut the whole thing down, and upgrade?

Hypothetical picture of
what would happen if
Google or Facebook
were down for 1 minute

Andrew Hilton / Duke ECE

Maybe more complex?

• Maybe we want to upgrade v1.0 to v2.0

• Version 1.0 data: accessed by v2.0 software..

Andrew Hilton / Duke ECE

Maybe more complex?

• Maybe we want to upgrade v1.0 to v2.0

• Version 2.0 data, accessed by version 1.0 software…

• Why is this a bigger problem?

Andrew Hilton / Duke ECE

Think, Pair, Share
• Under what conditions… can v1.0 access v2.0 data with no problems?

• I.e., what properties of the data guarantee we can just run v2.0 fine

• How could we handle cases where the above conditions are not met?

• What do we do instead?

Andrew Hilton / Duke ECE

v1.0 can handle v2.0 data
• Easy: v1.0 and v2.0 have same data layout/constraints

• Only add fields and/or tighten constraints

• v1.0 has (name, grade) and v2.0 has (name, grade, bday)

• v1.0 requires x >= 0 and v2.0 writes data with x > 0

• v2.0 must be written to handle v1.0 data

• e.g. missing bday

• x = 0

• This is ok: we know these requirements when we write v2.0

Andrew Hilton / Duke ECE

What if v1.0 Cannot Handle v2.0 Data?
• Suppose we make some change that v1.0 cannot handle

• v1.0 expects a field to be an int, but v2.0 writes arbitrary strings

• (relaxes constraints)

• v2.0 removes/renames fields [hint: don't]

• Solution: make v1.9

•Writes v1.0 compatible data

• Can read/handle v2.0 data

• Spin up v1.9, until all v1.0s replaced

• Then spin up v2.0 to replace v1.9

Andrew Hilton / Duke ECE

Migrating Data?
• Migrating Data is tricky

• E.g., change storage tier itself itself?

• Reading:

• http://onstartups.com/tabid/3339/bid/97052/How-To-Survive-a-Ground-
Up-Rewrite-Without-Losing-Your-Sanity.aspx

http://onstartups.com/tabid/3339/bid/97052/How-To-Survive-a-Ground-Up-Rewrite-Without-Losing-Your-Sanity.aspx
http://onstartups.com/tabid/3339/bid/97052/How-To-Survive-a-Ground-Up-Rewrite-Without-Losing-Your-Sanity.aspx

Andrew Hilton / Duke ECE

Another Reason for Slow Rollout: Testing

• Suppose v2.0 has some bug we didn't catch in testing

Andrew Hilton / Duke ECE

Speaking of Storage…

• Our code is running happily, but what if…

• A storage server fails? Temporarily or Permanently

• This is what Tyler will talk to you about (late Fe)

Andrew Hilton / Duke ECE

Another Major Issue: Configuration!
• Code you have written:

• Minimal, if any configuration. Likely read at startup

• Servers:

• Much more configuration: see /etc/ssh/sshd_config, /etc/apache2/*, etc..

• Re-read/change while running?

• Warning: changing config as dangerous as changing code!

• Reading 2:

• https://status.cloud.google.com/incident/compute/16007

https://status.cloud.google.com/incident/compute/16007

Andrew Hilton / Duke ECE

Used By You vs Used By Many People

• Another major difference:

• Things you have written: used by you

• Server Software: used by (many?) other people…

• Complexities?

Andrew Hilton / Duke ECE

Used By You vs Used By Many People

• Concurrency/Scalability

• Many things going on at once in system

• Need to handle many requests efficiently

Book Seat 2A on
flight 1234

Book Seat 2A on
flight 1234

Andrew Hilton / Duke ECE

Performance: I feel the need for speed
• Performance: Users care about speed

• Want system to be fast!

• From system perspective:

• Many users

• Want to be fast for all of them at once…

• Performance comes in two metrics:

• Latency: time to complete one request

• Throughput: requests/second

• Not the same, but they do interact…

• Let us look at non-software example…

Andrew Hilton / Duke ECE

Latency vs Throughput

• Here is a "road".

• 1 lane

• 70 mph

• 700 miles long

Andrew Hilton / Duke ECE

Latency vs Throughput

• Latency: 700 miles @ 70 mph= 10 hours to travel

Andrew Hilton / Duke ECE

Latency vs Throughput

• Latency: 700 miles @ 70 mph= 10 hours to travel

• Throughput: 1 car/ 10 hours = 0.000028 cars/second ?

Andrew Hilton / Duke ECE

Latency vs Throughput

• Latency: 700 miles @ 70 mph= 10 hours to travel

• Throughput: 1 car/ 10 hours = 0.000028 cars/second ?

• Throughput: 0.3 cars / second

Andrew Hilton / Duke ECE

Latency vs Throughput

• Different things: can affect one without changing other

• Another lane? Throughput improves, latency unchanged

Andrew Hilton / Duke ECE

Latency vs Throughput

• Different things: can affect one without changing other

• Another lane? Throughput improves, latency unchanged

• Shorter road? Throughput unchanged, latency improves

Andrew Hilton / Duke ECE

Latency vs Throughput

• Different things: can affect one without changing other

• Another lane? Throughput improves, latency unchanged

• Shorter road? Throughput unchanged, latency improves

• Cars drive faster? Both improve (*)

• (*) Except that you need more space for safety…

Andrew Hilton / Duke ECE

So Which Do We Care About?
• What matters? Latency or throughput?

• From a user's perspective: latency

• From a system perspective, both matter

• Need high throughput to get low latency for many users

• Latency goes up with resource contention and queueing delays

• Back to our road example…

Andrew Hilton / Duke ECE

Latency vs Throughput

• Heavy traffic, more cars merging in.. What happens?

Andrew Hilton / Duke ECE

Latency vs Throughput

• Heavy traffic, more cars merging in.. What happens?

• Latency goes up

• Cars slow down due to resource (road space) contention

Andrew Hilton / Duke ECE

Latency vs Throughput

• Alternative: merge traffic lights

• Traffic queues up (at on ramp)

• Reduce resource contention (keep speeds higher)

• Ideally: maintain speed, extra latency comes in queue

Andrew Hilton / Duke ECE

Latency vs Throughput

• Adding more systems won't help latency (probably)

• May experience resource contention (cache, locks, etc…)

100 reqs/sec

100 reqs/sec

100 reqs/sec

100 reqs/sec

350 reqs/sec

Andrew Hilton / Duke ECE

Latency vs Throughput

• System is oversubscribed: queuing delays add to latency

• Adding more throughput would reduce latency!

100 reqs/sec

100 reqs/sec

100 reqs/sec

100 reqs/sec

500 reqs/sec

Andrew Hilton / Duke ECE

Used By You vs Used By Many People

• Another complexity: trust
• Are all those users out there good?

Andrew Hilton / Duke ECE

Trust?

• Might be evil (red eyes and fangs = evil)

• Steal information

• Modify information

• Use server for nefarious purposes (spam,…)

Andrew Hilton / Duke ECE

Trust?

• Distrust connection…

• Adversary might eavesdrop (passively gather information)

• Or tamper with connection (actively change what is sent)

Andrew Hilton / Duke ECE

(Mis-)Trust: DOS

• Malicious user may also attempt to deny service

• DOS = Denial of Service

Andrew Hilton / Duke ECE

(Mis-)Trust: DDOS

• Malicious user may also attempt to deny service

• DOS = Denial of Service

• DDOS = Distributed Denial of Service

Andrew Hilton / Duke ECE

What Does The Server Look Like?

• Now, we've seen a bunch of differences in constraints/requirements

• But what does the server itself look like?

• …it depends…

Always the answer in CE

Andrew Hilton / Duke ECE

Batch Servers

• Submit jobs (possibly in bulk)

• Server will do them later (when it can)

Client Server
Please run these 57 programs

Ok, sure

Status?
Finished 1,3. Started 2

Andrew Hilton / Duke ECE

Batch Servers
• Examples:

• Sun Grid Engine, Condor,…

• Mostly queue requests

• Possibly with priorities

• Most concerned with throughput

• Overhead latency << job latency

• Running code for user?

• Generally more trust than most systems

Andrew Hilton / Duke ECE

Interactive Servers

• (Many ?) requests, sent/handled frequently

Client Server
ls

. .. file1 file2
dir1 xyz abc
[drew@host]:~$

cd dir1

[drew@host]:~/dir1$
emacs Makefile

Andrew Hilton / Duke ECE

Interactive Servers
• Examples:

• sshd

• Game servers (WoW)

• Latency is critical

• Web-servers similar,

• Just flurry of requests, then close connection

Andrew Hilton / Duke ECE

Database Servers / DBMS
• Process queries from clients

• Often must efficiently process many tuples to satisfy query

• High tuple throughput -> low response latency

•Often have special IO needs, require much RAM

•Quite a complex beast (topic of advanced database classes)

• Examples: Postgres, MySQL, Oracle,….

Andrew Hilton / Duke ECE

File Servers
• Put filesystem on remote server

• Why?

• Use same files on many systems

• E.g., login to any lab computer, have same home directory

• Compute requirements << IO requirements

• IO slower than compute anyways

• Examples: NFS, AFS,…

Andrew Hilton / Duke ECE

Proxy Servers

• Pass requests to "actual" server

Client Proxy Server

GET obama_biden.png
GET obama_biden.png

Andrew Hilton / Duke ECE

…but really…all the same

• Pretty much all of these have a unix daemon that

• Accepts requests

• Processes them

• Sends responses

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
} Note: really need some parallelism

Andrew Hilton / Duke ECE

Coming soon: Unix Daemons

• Soon: all the details of how to make this work

• You'll write a web proxy server

• 650: concurrency + socket programming

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
}

Andrew Hilton / Duke ECE

Coming soon: Unix Daemons

• Server side web development

• How to process the request

• Web-servers (Apache,…) have ways to "hook up" to code to
generate content

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
}

Andrew Hilton / Duke ECE

Next Time:
• Next Time:

• Protocol/API/Server Concepts

• Asynchronous requests

• At least or at most once

• Idempotent Operations

