Engineering Robust Server Software Introduction

Welcome To ERSS!

- Welcome to Engineering Robust Server Software (ERSS) • A brand new class [first time offered]
- - Pardon any rough edges
 - Feedback/suggestions welcomed
- Introductions:
 - I'm Drew Hilton—-call me Drew
 - Many of you know me from 551 (but not all)
 - Introduce yourselves to everyone

Assumptions Going Into This Class

- 1. I assume you want to be a software development professional
- 2. I assume you are taking 650 (or have equivalent preparation)
 - You are competent C programmer (Mastery of 551 material)
 - You know basic systems concepts: caching, instructions, etc... (550)
 - If not in 650, you know or are learning:
 - Programming with pthreads
 - Networking
- 4.I assume you can consult documentation, try things out, etc.

3.I assume you are eager to learn this material, and write a bunch of code

What is this class about?

- Engineering Robust Server Software
 - Software: This class is all about software
 - Hardware may come up in regards to how it affects sw performance
 - Engineering: Designing and building systems
 - This is an engineering class, so expect to build a lot of software
 - Focus on useful things in real world
 - **Robust**: Stands up in the face of adversity
 - Badly formed user inputs, many requests at once, evil users...
 - Server: handles requests from clients
 - Different constraints from most programs you have written

Server Software

- Servers come in a wide range of "flavors"
- We are going to consider two major ones
 - UNIX daemons: sshd, httpd, ...
 - C/C++, systems programming...
 - Web-sites: writing the server side logic for a website
 - Django, databases
- Three major themes
 - Security
 - Resilience
 - Scalability

• • •

- [1] Intro (now—~2/7)
 - Requirements/constraints/differences from other software
 - Protocols
 - Unix Daemons
 - DJango/website/AJAX basics
 - Guest lecture: Broad Systems Picture

- [2] Security (~2/9—2/21)
 - Cryptography basics
 - TLS (https)
 - Common attacks/vulnerability types
 - (e.g., SQL injection, privilege escalation, ...)
 - Randomness
 - Side channel attacks
 - Famous vulnerabilities: Heartbleed, Dirty COW, Apple goto
 - Guest Lecture: Tara Gu (Google, Duke ECE MEng Alumn)

y types leae escalation

bleed, Dirty COW, Apple goto gle, Duke ECE MEng Alumn)

- [3] Resilience (~2/23—3/9)
 - Error handling, exception models/safety
 - Dealing with non-atomic operations
 - High-availability/disaster recovery (Tyler)
 - Guest Lecture: Melissa Fritcher (IBM, Duke ECE MEng Alumn)
 - Melissa works on the team that make sure *ibm.com* is always up.

- Spring break (No class 3/14 or 3/16)
 - I will be in China, limited email
- Then midterm exam Tuesday 3/21

Interlude

- [4] Performance/Scalability (~3/21—4/6)
 - Non-blocking IO
 - C++ atomics, memory model
 - Serialization bottlenecks
 - Locking granularity
 - "hidden" locks
 - Load balancing
 - Load testing
 - IO Scalability (Tyler)

- [5] "Topics" Guest Lectures (~4/11–4/20)
 - Tami Lehman: Intel SGX (Intel / Duke PhD Student)
 - Jim Posen: Secure Payment Systems (Coinbase/ Duke ECE alumn)
 - Vlad Petric: Reliable No-SQL Systems (Hedgefund)
 - (TDB)

What Will You Do?

- 4 Homeworks:
 - Pair programming (different partner each homework)
 - Thinking about and write down "dangers"
 - Revisit as semester progresses
- 1. Caching Http Proxy (Unix Daemon in C)
- 2.Simple Website (Django)
- 3. Exploit programs (Attack programs I give you)
- 4.Load testing (Any language)

"Danger" Log

Critical programming skill: "spidey sense"

- As you write, internal mental warning of danger
 - "What if the user ..."
 - "What if we run out of memory..."
 - "What if this fails..."
 - "What if..."
- As you code, think of these, write them down
 - Submit a text file with your thoughts
 - Particular focus on class themes (security, resilience, scalability)

"Danger" Log 2.0

- As you learn new things, revisit old assignments
 - Look at code:
 - What should you have worried about?
 - Look at danger logs:
- What could you have done about these dangers? Update log with new thoughts ~weekly.

Pair Programming

- Highly recommended development model: pair programming
 - Not just "doing assignment with a partner"
- Partners work on code at same time
 - One is "driver"
 - The other "navigator"
 - Switch roles frequently/as needed
- Driver: writes code
- Navigator: watches
 - Looks for errors, danger, thinks about bigger picture..

Pair Programming

- Useful tool: screen (or tmux)
 - Multiplex terminal session
 - Can have two terminals connected to one logical terminal
 - Both of you can look at, edit code from your own laptops
 - Facilitates switching driver/navigator
- Either in same room, or on voice chat of some sort
 - Typing too slow

What Will You Do? (cont'd)

- 1 Midterm (Tuesday 3/21)
- 1 Final (Registrar exam schedule)
- 1 Project (Due 4/27)
 - Do in pairs (may select partner from prior hwk) • Half class: e-commerce site ("Amazon")

 - Half class: shipping site ("UPS")
 - Systems have to interact

Project: High-level View

• I will define these protocols/implement these parts...

- I'll give you a protocol spec
- ... but you should be resilient to **anything**
 - After all, that is a goal of this class

"Credit Card"

Project: High-level View

• You will do either the red (e-commerce) or the blue (shipping) • Protocol between them? Defined by your **interoperability** group

Project: High-level View

- 4 groups (8 people) = 1 interoperability group

 - 8 of you define protocol

Both e-commerce sites must work with both/either shipping site.

Where will you do it?

- You will each have your own server
 - You get root on it, you administer it
- OIT will provide VMs with a restricted network
 - Reduce security risks
 - Accessible only by Duke IPs
- Go to <u>http://vm-manage.oit.duke.edu/</u>
 - Login with netid

Choose New in Upper Right

Go ahead and do now...

Use ERSS Image to Provision

STA 663

Virtual Machine Management Panel

VM	MANA	GEMEN	T TOOLS		
Ů	Power o	on	U Pov	ver off	
	Reload	original	image		De

General Information for ECE 590- Engineering Robust Server Software How to access your VM

Full Name Bitnami Image **Initial Password Current Status** Owner: **Requested:** Expired?

Snapshots

Snapshots are made daily at 06:00 ET. Only one snapshot will be kept. You can create a more recent snap, but it will be overwritten the next morning.

Snapshot

System

Base Memory 2 GB Processors 2

Extra Info patched7-24-2016

- Login to your server
 - Username bitnami
 - Password (provided on confirmation screen)
- Setup a user account w/ sudo
 - sudo adduser name
 - sudo adduser name sudo
- Now you can ssh in as name

Install Software!

• Your server: fresh image, not much software installed

• sudo apt get install package

.ssh - drew@ubuntu14-generic-template-01: ~ - ssh - 90×28

Packages you probably want to install

- For C development: gcc g++ make valgrind
- For editing: emacs screen
 - Recommended .screenrc: escape ^oo
- For source control: git
- Database: postgresql-9.5
- For Django: python python3-pip
 - Then do: sudo pip3 install django psycopg2
 - Then django-admin --version should give 1.10.4
- Libraries: libssl-dev libxerces-c-dev libpqxx-dev
- Documentation: manpages-posix-dev

Recommended Server Setup [Optional]

- Set up your "dot files"
 - ~/.emacs : emacs configuration
 - ~/.profile : commands read on login
 - export EDITOR='emacs -nw'
 - export VISUAL='emacs -nw'
- Setup ssh key pair(s)
 - Login without password: private key authenticates
- Pick somewhere to backup your work
 - Keep a git remote on **another** computer

• Grade Breakdown:

- Homeworks:
- Project:
- Midterm:
- Final:
- Letter grade:

25%	
35%	
20%	
30%	
A- [90,93)	
B- [80,83)	
C- [70,73)	

Grading

A	A+
[93,97)	[97 , ∞)
В	B+
[83,87)	[87,90)
С	C+
[73,77)	[77,80)
F	
$(-\infty, 70)$	

- Many standards are in the form of RFCs
- You SHOULD spend some time reading RFCs this semester
 - ...and may effectively write one during your project
- Start with this one (describes MUST/MAY/SHOULD etc in RFCs)
 - <u>https://tools.ietf.org/html/rfc2119</u>

RFCs

- Wrap up for this time:
 - Questions?
 - Find partners for homework 1
- Next time:
 - Start talking about server software

Next Time..

