
SOFTWARE
ENGINEERING

ECE 651

SPRING 2020

JAVA FOR C++ PROGRAMMERS

A TALE OF TWO LANGUAGES

C w/Classes
1979

C++
1983

JAVA
1996

S.O.L.I.D.
2000

Better Design Decisions?

QUICK REMINDER – OO DESIGN PRINCIPLES

¡ Abstraction, Encapsulation, Inheritance, Polymorphism!

¡ Effective parallelism between developers requires independent tasks

¡ Least Surprise

¡ DRY: Don't Repeat Yourself

¡ Low Coupling / High Cohesion

¡ SOLID

¡ Design for testability

THINK, PAIR,
SHARE

I will introduce a difference between
C++ and Java, you will think about
design principles that the difference
might support.

METHOD DISPATCH

C++

¡ Can request dynamic dispatch
¡ Calls to an overridden method is

resolved at runtime

¡ How do we request it?
¡ virtual on declaration in class of

static type (or its parents)

Java

¡ Dynamic dispatch for every
method

¡ No other choice

DESIGN
PRINCIPLES
ADDRESSED

¡ Least Surprise: Might expect dynamic dispatch

¡ Especially if you wrote virtual in the child class

¡ Open/Close: Didn't make it virtual to begin
with? Need to modify parent

¡ What if we we had a different subclass with
same method/static dispatch?

MEMORY ALLOCATION FOR OBJECTS

C++

¡ Objects created in Heap or Stack

¡ Object in the frame

¡ Destroyed when function returns

¡ Heap management

¡ The memory containing the object persists
until the end of your program, or until you
delete the object

¡ Uses delete + destructors

JAVA

¡ All Objects created in the Heap

¡ No such thing as objects in the frame

¡ Heap management

¡ Garbage collection – freeing any object
without reference in the method

¡ No destructors

DESIGN
PRINCIPLES
ADDRESSED

¡ Least surprise: no strange bugs from free-
related errors

¡ Better abstraction: don’t need to know
where memory is allocated or when to free

NO OBJECTS IN THE FRAME: WHAT’S THE CONSEQUENCE?

¡ No Resource Acquisition is Initialization (RAII)

¡ What is RAII?

¡ Local object owns resource, responsible for destruction

¡ How do we handle non-memory resources?

NON-MEMORY RESOURCES (1)

¡ Reminder: Multi-threading means more than one thread of code can run
simultaneously

¡ “synchronized” is a Java keyword that locks/unlocks a mutex.

synchronized(object) { //locks mutex in object

//critical section code

} //unlocks mutex: even if block is exited by exception

¡ Mutexes (locks) are one synchronization technique

¡ Mutexes ensure exclusive access (one thread can lock at a time)

¡ Written by experts to ensure no problems with hardware re-ordering

Image Source: http://web.mit.edu/6.031/www/fa17/classes/21-locks/

NON-MEMORY
RESOURCES (2)

¡ “finally” block ensures that the
JVM will execute the code
written within it even if there is
an exception in the code

¡ Avoid having cleanup code
bypassed by a return, continue,
or break

Source: https://www.javaworld.com/article/2077609/try-finally-clauses-defined-and-demonstrated.html

NON-MEMORY
RESOURCES (2)

¡ Try-with-resource:

¡ Shorthand for try/finally

¡ Where finally just closes
resource

¡ Resource must implement
java.lang.AutoCloseable

OR

INHERITANCE

C++

¡ Multiple Inheritance

¡ A subclass can inherit from more than one
superclass

Java

¡ Single inheritance

¡ Uses interfaces instead

Animal

Bat

INTERFACES IN JAVA

¡ Specify what a class
must do (method
specification), but not
how (implementation)

Animal

Bat

<<FlyingCreature>>

<<Quadruped>>

Bear

DESIGN
PRINCIPLES
ADDRESSED

¡ Interface Segregation Principle: Can
split interfaces without complications
of multiple inheritance

¡ Dependency Inversion Principle: can
depend on just an interface

PARAMETRIC POLYMORPHISM

¡ A programming language technique that enables the generic
definition of entities (classes, functions, methods), to improve
code re-use

¡ Entities are parameterized over one or more types (e.g., “T”)

¡ Can be used for any T

¡ E.g., LinkedList<int>, LinkedList<String>,…

PARAMETRIC POLYMORPHISM

C++

¡ Called “templates”

¡ Recompiled for each T it is used with

¡ Type checking done at use

¡ Code must be directly visible at use

Java

¡ Called “generics”

¡ Compiled once, re-used for all Ts
¡ T is “erased”: not available at runtime

¡ Type checking done at definition

¡ Can use compiled class files
normally

PARAMETRIC POLYMORPHISM

¡ True independence of the type (really for all) is restrictive
¡ Want to order things? Not all types are orderable.

¡ Want to check for equality? Not all types support equality testing.

¡ Want to ….? Not all types support …

JAVA GENERICS

¡ Once Glass<T> is compiled
works for any type

¡ Compiles one version of Glass
for Ts it is used with

¡ T goes away, and is turned into
Object (Type Erasure)

BOUNDED POLYMORPHISM

¡ Could use “Cake” as a
parameter, but this is not really
what you want.

¡ Instead can restrict generic to
bounded type parameters

¡ Now glass instantiations will
only accept liquids

THINK, PAIR,
SHARE

¡What design principles do
generics address?

DESIGN
PRINCIPLES
ADDRESSED

¡ Least surprise: don’t get compiler
errors in a class you’ve used many
times

¡ Abstraction: clear interface: know
exactly what we need to use as type
parameter

¡ “Parametric analog of Liskov
Substitution Principle” – Drew

¡ LSP basically says if S is a subtype of T, code
works fine if use S where T expected

¡ Parametric analog : if code parameterized over
<T>, and can pass S in for that parameter,
code should work.

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

Type bounded polymorphism is overly
constraining!
With templates, I can make a vector of
anything. I only need < defined on T if I
need to order vector<T>!

C++

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

public class OrderableVector<T extends Comparable>
extends Vector<T>
implements

Comparable<OrderableVector<T>>

Java

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

Well what if I had 5 different things that
you might or might not define? 5 different
sub-classes? 31 for all combinations?

C++

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

That isn't really common, and if it does come up,
maybe you should rethink your design in that case?

Java

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

But I can do it if that's my choice.

C++

SML FUNCTORS

¡ SML has a better solution than either of these, in its functors
¡ Embodies dependency inversion

¡ To become an awesome SML hacker and write a compiler
¡ Take ECE 553 next year!

OPERATOR OVERLOADING & USER-DEFINED CONVERSIONS

C++

¡ Allows operator overloading

¡ E.g., overload <, ==, etc. to use Standard Template Library

¡ Many user-defined implicit conversions

¡ One argument constructors (how do we prevent implicit
use?)

¡ operator type()

Java

¡ Allows overload parameter lists on methods

¡ No user-defined overloading of operators

¡ Easily abused

¡ Makes confusing code

¡ No user-defined implicit conversions

¡ Good b/c not surprised by them (Least Surprise x 100)

JAVA’S TOSTRING

¡ Java Object's have

¡ public String toString()

¡ which specifies how to convert that object to a String

¡ Does not get used implicitly

¡ E.g., cannot pass SomeOtherClass to method that takes String

¡ May look implicit in certain cases (but not really)

¡ Methods that take Object and call toString on them

¡ + operator for concatenation

OVERRIDE ANNOTATION

¡ Use @Override to override a method

¡ Not required

¡ Best practice

¡ Compiler checks to make sure that you are overriding something in parent

¡ Helps to avoid errors (e.g., typo, different parameter list, etc)

