SOFTWARE
ENGINEERING

ECE 651
SPRING 2020
JAVA FOR C++ PROGRAMMERS

A TALE OF TWO LANGUAGES

S

[

C w/Classes C++ JAVA
1979 1983 1996
Better Design Decisions? I
S.0.L.I.D.

401010

QUICK REMINDER - 00 DESIGN PRINCIPLES

= Abstraction, Encapsulation, Inheritance, Polymorphism!

= Effective parallelism between developers requires independent tasks
m | east Surprise

= DRY: Don't Repeat Yourself

= Low Coupling / High Cohesion

= SOLID

= Design for testability

| will iIntroduce a difference between
THINK, PAIR, C++ and Java, you will think about

SHARE design principles that the difference
might support.

METHOD DISPATCH

C++

= Can request dynamic dispatch

= Callsto an overridden method is
resolved at runtime

= How do we request it?

= virtual on declaration in class of
static type (or its parents)

Java

= Dynamic dispatch for every
method

= No other choice

= Least Surprise: Might expect dynamic dispatch
= Especially if you wrote virtual in the child class

DESIGN = Open/Close: Didn't make it virtual to begin
PRINCIPLES with? Need to modify parent

ADDRESSED = What if we we had a different subclass with
same method/static dispatch?

MEMORY ALLOCATION FOR OBJECTS

C++ JAVA

= (Objects created in Heap or Stack = All Objects created in the Heap

= QObject in the frame = No such thing as objects in the frame
= Destroyed when function returns N

Heap management

= Heap management = Garbage collection - freeing any object

= The memory containing the object persists without reference in the method

until the end of your program, or until you N

No destructors
delete the object

= Uses delete + destructors

= | east surprise: no strange bugs from free-
related errors

DESIGN
PRINCIPLES

ADDRESSED = Better abstraction: don’t need to know
where memory is allocated or when to free

NO OBJECTS IN THE FRAME: WHAT’'S THE CONSEQUENCE?

= No Resource Acquisition is Initialization (RAII)
= What is RAII?

® Local object owns resource, responsible for destruction

= How do we handle hon-memory resources?

NON-MEMORY RESOURCES (1)

Cash
machines A B C D
deposit $100 withdraw $100 deposit $100 get balance
to account | from account 2 to account | of account |
v v
Bank $50 $200 $50 Shared memory
account | account 2 account 3
Cash
waiting for lock / \ waiting for lock
¥ ¥
lock holder f

Reminder: Multi-threading means more than one thread of code can run
simultaneously

“synchronized” is a Java keyword that locks/unlocks a mutex.
synchronized(object) { //locks mutex in object
//critical section code
} //unlocks mutex: even if block is exited by exception
Mutexes (locks) are one synchronization technique

® Mutexes ensure exclusive access (one thread can lock at a time)

= Written by experts to ensure no problems with hardware re-ordering

Image Source: http://web.mit.edu/6.031/www/fal7/classes/21-locks

NON-MEMORY
RESOURCES (2)

= “finally” block ensures thatthe
JVM will execute the code
written within it even if there is
an exception in the code

= Avoid havingcleanup code
bypassed by a return, continue,
or break

try {
/7 Block of code with multiple exit points
}

catch (Cold e) {
System.out.println("Caught cold!");
}

catch (APopFly e) {
System.out.println("Caught a pop fly!");
}

catch (SomeonesEye e) {
System.out.println("Caught someone's eye!");
}

finally {
/7 Block of code that is always executed when the try block is exi:
/7 no matter how the try block is exited.
System.out.println("Is that something to cheer about?");

Source: https://www.javaworld.com/article/2077609/try-finally-clauses-defined-and-demonstrated.html

NON-MEMORY
RESOURCES (2)

= Try-with-resource:
= Shorthand for try/finally

= Where finally just closes
resource

= Resource must implement
java.lang.AutoCloseable

File

(FileInputStream myInput
FileInputStream(fname)) {

es myInput

InputStream myInput 5

{
myInput

FileInputStream(fname));

14
CIiks L 4)

{
(myInput k)
myInput.close();

INHERITANCE
C++ Java
= Multiple Inheritance = Single inheritance
= Asubclass can inherit from more than one = Uses interfaces instead
superclass

Animal
wingedAnimal

INTERFACES IN JAVA

= Specify what a class
must do (method
specification), but not
how (Implementation)

Animal
Pl <<FlyingCreature>>
@ <<Quadruped>>

" |Interface Segregation Principle: Can
DESIGN split interfaces without complications

PRINCIPLES of multiple inheritance

ADDRESSED = Dependency Inversion Principle: can
depend on just an interface

PARAMETRIC POLYMORPHISM

= A programming language technique that enables the generic
definition of entities (classes, functions, methods), to improve
code re-use

= Entities are parameterized over one or more types (e.g., “T")

= Can be used forany T
= E.g., LinkedList<int>, LinkedList<String>,...

PARAMETRIC POLYMORPHISM

C++ Java
= Called “templates” = Called “generics”
= Recompiled for each T it is used with = Compiled once, re-used for all Ts

i = Tis “erased”. not available at runtime
= Type checking done at use

= Type checking done at definition
= Code must be directly visible at use yP g

= Can use compiled class files
normally

PARAMETRIC POLYMORPHISM

® True independence of the type (really for all) is restrictive

= Want to order things? Not all types are orderable.
= Want to check for equality? Not all types support equality testing.
= Wantto....? Notall types support...

JAVA GENERICS

Glass<T> {

Once Glass<T> is compiled

works for any type 14 Meal makeBrunchSpecial() {
1S Glass<Juice Glass<Juice-();
Juice juice = getJuiceOfTheDay();

Compiles one version of Glass
for Ts it is used with

T goes away, and is turned into
Object (Type Erasure)

BOUNDED POLYMORPHISM

= Could use “Cake” as a

parameter, but this is not really
what you want.

= |nstead can restrict generic to
bounded type parameters

= Now glass instantiations will
only accept liquids

30 Glass<Cake> cakeGlass

<l 2 L = 12 P al P = cannco l
% r} 4417, N - N "N A~ |
)1 | 7 HHICAINC QCTIIOC .,

Glass<Cake>(Q);

Liquid {

Glass<T
T liquid;

Liquid> {

= What design principles do
SHARE generics address?

THINK, PAIR,

DESIGN

PRINCIPLES
ADDRESSED

= Least surprise: don’t get compiler
errors in a class you've used many
times

= Abstraction: clear interface: know
exactly what we need to use as type
parameter

= “Parametric analog of Liskov
Substitution Principle” - Drew

= |SP basically says if S is a subtype of T, code
works fine if use S where T expected

= Parametric analog : if code parameterized over
<T>,and can pass S in for that parameter,
code should work.

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

Type bounded polymorphism is overly
constraining!

With templates, | can make a vector of
anything. lonly need < defined on T if |
need to order vector<T>!

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

public class OrderableVector<T extends Comparable>
extends Vector<T>
implements
Comparable<OrderableVector<T>>

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

Well what if | had 5 different things that
you might or might not define? 5 different
sub-classes? 31 for all combinations?

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

Thatisn't really common, and if it does come up,
maybe you should rethink your design in that case?

WHAT WOULD C++ DESIGNERS ARGUE ARE BETTER ABOUT
TEMPLATES?

But | can do it if that's my choice.

SML FUNCTORS

= SML has a better solution than either of these, in its functors
= Embodies dependency inversion

= To become an awesome SML hacker and write a compiler
= Take ECE 553 next year!

OPERATOR OVERLOADING & USER-DEFINED CONVERSIONS

C++

Allows operator overloading

E.g., overload <, ==, etc. to use Standard Template Library

Many user-defined implicit conversions

One argument constructors (how do we prevent implicit
use?)

operator type()

Java

= Allows overload parameter lists on methods

= No user-defined overloading of operators

= Easily abused

= Makes confusing code
= No user-defined implicit conversions

= Good b/c notsurprised by them (Least Surprise x 100)

JAVA’S TOSTRING

= Java Object's have

= public String toString()

= which specifies how to convert that object to a String
= Does not get used implicitly

= E.g., cannot pass SomeOtherClass to method that takes String
= May look implicit in certain cases (but not really)

= Methods that take Object and call toString on them

=+ operator for concatenation

OVERRIDE ANNOTATION

Use @Override to override a method

myMethod(

Not required :
Best practice
Compiler checks to make sure that you are overriding something in parent

Helps to avoid errors (e.g., typo, different parameter list, etc)

x) {

