
Designing for Failure
Jim Posen, Payments @ Coinbase



Who am I?

● ECE/CS 2014 graduate
● Took compilers with Professor 

Hilton (you should too!)
● Head of Chronicle development 

team at Duke
● Currently tech lead on payments 

team at Coinbase



What is Coinbase?

● Consumer platform for buying, selling, and storing digital currency
● Run a regulated digital currency exchange, GDAX
● We integrate with various global banks and payment processors
● Supports multiple blockchain-based currencies, Bitcoin and Ethereum
● This has major security implications

○ Coinbase is a counterparty to these trades
○ We store a lot of money on behalf of our customers
○ Anonymity & irreversibility Bitcoin payments makes security 

imperative



What does robust mean for Coinbase?

● Different applications have different priorities and requirements
○ Financial websites vs social media sites

● There are often tradeoffs between security/consistency, 
availability/performance, and execution speed

● For Coinbase, security/consistency is the #1 priority
● We need to maintain security while integrating with banks and 

blockchains of varying levels of reliability



Overview

How do you write robust code that depends on unreliable APIs and 
and subsystems?

● Modelling applications as state machines
● Asynchronous communication patterns
● Idempotence



Anatomy of a purchase

● Prerequisites
○ User is signed into site
○ User has already linked a credit card
○ User is authorized to make a purchase

● User makes HTTP request to purchase, providing
○ Amount of Bitcoin
○ Price quote offered by Coinbase
○ Destination Bitcoin address



Processing a purchase

On the backend, we want to:

a. Look up and validate user credit card information
b. Charge the credit card using a third-party processor
c. Cancel the purchase if charge fails
d. Send Bitcoin if charge succeeds
e. Notify the user when the Bitcoin transaction is confirmed by the 

peer-to-peer network



● validate_request and 
charge should return 
more than a boolean

● HTTP responses contain 
no information

● Never sleep in an HTTP 
request

● These are the obvious 
things, what else can go 
wrong?



Understanding failure modes

- Request can’t be sent (eg. TLS error)
- Request sent, response not received
- Response received with known error 

code
- Response received with unknown 

error code
- Response received with ambiguous 

error code (eg. HTTP 500)

- Same as credit card processing
- Transaction takes a long time to 

generate or cannot be generated
- Transaction stays unconfirmed 

for a long time or is never 
accepted by the network

Credit card processing Bitcoin transaction generation



Initial state

Request not valid

Request is valid

Credit card charge failed

Credit card charge succeeded

Bitcoin transaction pending

Bitcoin transaction completed



Defining a state machine

● State machines are a good way to model complex logic
● Set of states and conditions required to transition between states
● Each state may have

○ Data that is known by the application
○ An action that may be taken to move the process to completion
○ State transition conditions

● State machine can be represented in database as a status enum and 
the union of data fields from states



Purchase state machine

validate request

T
F

charge card

T

F

generate tx tx confirmed?

T

F

1 3

2 4

5 6 7



Failure mode #1: Request can’t be sent

Let’s handle this with 2 retries

validate request

T 6
charge card

T

F

generate tx tx confirmed?

T

F
FM1

1

2

53 7

4



FM#2: Request sent, response not received

● Say the HTTP connection times out
● Maybe the charge was initiated, maybe not
● What can we do?

● What if credit card processor API allows you to pass an ID/nonce?
● Generate unique ID before making request as part of state
● Query charge status with ID
● Handle this the same way as ambiguous error codes



FM#2: Request sent, response not received

validate request

T
F

charge card(ID)

T

F

generate tx tx confirmed?

T

FFM2

get charge status(ID)

1 53 76

2

8

4



FM#3: Response with unknown error code

validate request

T
F

charge card

T

F

generate tx tx confirmed?

T

F

FM#3

Manual intervention required state

In a system prioritizing consistency over availability, prefer to 
gracefully stop and alert a developer than do something incorrect

1 53 6

42

7

9



Bitcoin transaction failure modes

● Transaction cannot be generated immediately (not handled yet)
● Transaction is not accepted by the network and must be regenerated
● On average it takes 30 minutes for a Bitcoin transaction to confirm
● We control the interface to the Bitcoin service -- how should we 

design it?



Asynchronous interfaces

● HTTP request/response model is synchronous
● Client code blocks waiting for response, times out eventually
● Asynchronous operations may take an arbitrary amount of time
● Client code does not block waiting for response
● An asynchronous interface makes sense for Bitcoin processing 

because we will be able to broadcast and confirm a transaction 
eventually
○ Asynchronous interface cuts away failure modes

● How to make an asynchronous interface?



Synchronous -> Asynchronous

● Any synchronous call can be made asynchronous by
○ Put message in message queue/buffer with

■ Unique request ID
■ Function name and arguments
■ Calling context

○ Asynchronous processor (separate thread, process, or server) 
pulls messages from the queue and invokes function

○ Asynchronous processor puts message in return queue with
■ Request ID
■ Function return value



Asynchronous -> Synchronous

● You can always use polling/long polling to wrap a synchronous 
interface around an asynchronous one
○ The synchronous call may block indefinitely

● Asynchronous processing is more easily parallelizable if messages 
can be processed out of order

● Use select or language equivalent to poll multiple asynchronous 
interfaces efficiently



Synchronous vs Asynchronous

- Simpler to implement if processing 
time is bounded

- Errors can be detected and presented 
to user immediately

- Can be certain that information is 
up-to-date

- Work can be easily parallelized
- Tolerant to unavailability of 

callee
- Easier to treat a synchronous 

interface as asynchronous than 
vice-versa

- May require additional 
infrastructure, like a message 
broker

Synchronous Asynchronous



Message queues

● Persistent vs non-persistent queues
○ Redis is commonly used as a persistent queue
○ Unix pipes can be used as non-persistent queues

● Distributed vs non-distributed queues
○ Amazon SQS is a distributed queue
○ Distributed queues delivery messages out of order

● Understanding delivery guarantees
○ At-most-once delivery (fire and forget)
○ At-least-once delivery (retry delivery until acknowledgement)



Idempotence

● An idempotent operation is one that when applied multiple times, 
has the same effect as being applied once

● Idempotent operations can be safely retried
● Implementing idempotent message handlers makes at-least-once 

delivery workable



Implementing idempotent operations

● Idempotent operation accepts a unique identifier or nonce
● Acquire lock on idempotence key
● Read existing status of the operation
● Release lock and exit if operation has already been performed
● Perform operation and write result with idempotence key
● Release lock and exit



Asynchronous, idempotent Bitcoin processor

● Generate Bitcoin payment ID at the beginning of processing
● Enqueue message send_transaction(payment_id, amount, address)
● Bitcoin service/process polls queue and processes new payments
● Replies with payment_update(payment_id, transaction_id, status)
● If no payment updates (acks) received, you can safely resend 

messages
● State transition happens on receipt of async message, not as a 

consequence of caller action



Handling out of order messages

● What if payment_update messages are delivered out of order?
○ We don’t want to update a transaction’s state with old info

● Sequence numbers to order messages
○ Only process a message if sequence no is higher than last seen
○ TCP uses sequence numbers to order IP datagrams

● Hybrid async/sync processing
○ Async messages notify other process to retrieve transaction 

status synchronously
○ Availability and latency may be worse, but simpler to implement



Purchase state machine

validate request

T
F

charge card

T

F

payment_update
status=confirmed

1 3

2 4

5 6 7

payment_update
status=unconfirmed

In state 5, purchase processor sends 
a send_transaction message, 
even if already sent before



FM#2: Request sent, response not received

validate request

T
F

charge card(ID)

T

FFM2

get charge status(ID)

Remember how we handled this? Can we do better?

What if we made an idempotent 
wrapper around the charge_card call? 

payment_update
status=confirmed

6 7

payment_update
status=unconfirmed

1

2

8

53

4



FM#2: Request sent, response not received

validate request

T
F

Idempotent
charge card(ID)

T

F
FM2

The logic is the same, but the state machine is simpler

payment_update
status=confirmed

6 7

payment_update
status=unconfirmed

1 3

2

5

4



How does the web client handle async?

● HTTP 202 status: The request has been accepted for processing, but 
the processing has not been completed.

● Client needs to be notified of state transitions
● Websockets can be used to push notifications to the client
● Client polling can be used if websockets are not an option



What happens if execution 
spontaneously halts?

Even more failures!



Interruptions

● Any part of your code may be interrupted at any time
○ Your process may receive a termination signal
○ Your hard drive may fail
○ Unexpected runtime exception
○ Anything is possible in the cloud
○ Your database could crap out during high load

● You must be able to handle these interruptions
○ State machines make it easy to recover from interruptions

● Can be worthwhile to simulate failures (Neflix’s Chaos Monkey)



Object models
Purchase Processor

- perform_next_action()
- process_message(message)

Purchase Data
- state (Enum)
- card_data
- charge_id
- bitcoin_payment_id
- transaction_id

- persist()

Credit Card Service
- charge_card(ID, card_data)

- private create_charge(ID)
- private get_charge(ID)

Bitcoin Service
- send_transaction
- process_payment_update

(message)



Recap: the beauty of state machines

● State machines to orchestrate asynchronous interactions
● Safely retry state transition operations with idempotence
● Loose coupling between state transition operations helps to isolate 

failures between modules and facilitates testing
● They are easily extensible

○ What if we want to issue a credit card refund if the Bitcoin 
transaction times out?



Thanks for listening!

If you have any questions you can reach me at jimpo@coinbase.com


