
Investigating Cheating in Programming Assignments with
Distance-based Similarity Analysis of Strings and Abstract

Syntax Trees
Duke University Electrical & Computer Engineering

Graduation With Departmental Distinction Thesis

Natalia Androsz
advised by Dr. Andrew Hilton

November 2020

1 Introduction
Plagiarism and cheating are serious concerns for academic institutions. Duke University prides

itself on its Student Honor Code, which condemns unauthorized collaboration, plagiarism, and
cheating on all assignments. Although students agree to these standards upon enrolling in the
university, students continue to self-report acting in academically dishonest ways in national sur-
veys [1]. The primary deterrents for academic dishonesty are effective plagiarism detection tools.
While plagiarism detection tools are quite robust for written assignments, there is a relative dearth
of plagiarism tools intended for identifying cheating in programming assignments. In fact, most
professors depend on a single tool, Moss [2]. Despite the existence of Moss, analyzing program-
ming assignments for cheating is a time-consuming process [3]. The burden is on professors to
both understand Moss output and compile it into meaningful evidence of cheating. The compiled
evidence must then be presented to students, deans, and university administrators. University ad-
ministrators are typically individuals without a technical background in programming. For this
reason, it can be difficult to explain how a pair of code submissions is the product of plagiarism.
Beyond simple modifications such as changing comments and variable names, there is a large set
of structural manipulations that students can apply to copied code to make programs look differ-
ent and execute the same. Consider the following code snippets which print the message "Hello
world!" 10 times.

for(int i = 0; i < 10; i++){
cout << "Hello world!";

}

int i = 0;
while(i < 10) {

printf("Hello world!");
i++;

}
Figure 1: Functionally equivalent pieces of code.

Individuals with a programming background would identify these two pieces of code as func-
tionally equivalent. However, those without a programming background will most likely find these
code snippets quite different.

This paper describes the framework for a new plagiarism detection tool for programming as-
signments. Lichen (Let’s Investigate Cheating with Human-understandable Explanations and iN-
sights) aims to improve on the shortcomings of Moss in order to make it easier for professors to
identify and report academic dishonesty in programming assignments.

1

2 Moss
Moss (Measure of Software Similarity) is a cheating detection tool developed in 1994 by Alex

Aiken, associate professor of Computer Science at UC Berkeley [2]. Moss works with programs
written in C, C++, Java, Pascal, Ada, and other languages. For a pool of student submissions,
Moss compares all pairs of submissions for similarity. For each pair of programs, Moss reports the
number of matching lines and the overall degree of similarity.

2.1 Winnowing Algorithm
Moss uses a winnowing algorithm to find matching sequences between submission files [2]. A

high-level overview of this algorithm is provided below.

1. Determine the fingerprint of each submission.

(a) Tokenize each student submission.

(b) Divided the tokenized file into k-grams (contiguous substrings of length k).

(c) Compute the hash values for each k-gram.

(d) Select a subset of the file’s k-grams. This is the fingerprint of the file.

2. Winnow the fingerprints.

(a) Construct a window of consecutively defined hashes with size w by w, where w is the
number of submissions.

(b) Select the minimum hash value of each window, this is the new winnowed fingerprint
of the document.

3. Sort and compare the winnowed fingerprints.

2.2 Shortcomings
Moss has several noteworthy shortcomings. These shortcomings provide insight into Lichen’s

goals.

1. Moss does not provide deep insight into why a submission pair was flagged as similar.
Moss highlights portions of student code that were identified as similar but does not provide
insights into why any particular segment was highlighted. For example, Moss does not
specify whether a particular similarity is unique to a pair of submissions or if the similarity
appears in multiple submissions. The opaqueness of Moss results means professors must
dedicate additional time to deciding if Moss output is indicative of cheating or not.

2. Moss cannot identify simple structural manipulations as plagiarism. Moss has difficulty
identifying similarities between code samples that have minor structural differences that do
not impact the execution of a program [4]. This is the primary way that students have learned
to beat Moss. A trove of online resources exist that describe, in detail, how to evade the Moss
by making small structural manipulations to copied code [4, 5].

3. Moss does not consider student-generated identifiers nor comments. When code is tok-
enized, student-created identifiers such as variable names and function names are obscured.
Comments are also discarded. While tokenization allows Moss to target the structure of stu-
dent code, it also discards a large data set that can be used for additional similarity analysis.
This loss is particularly tragic in the case of comments, which are written in plain English
and should therefore be the most unique component of student code submissions.

2

3 Goals
From the previous discussion of Moss’s shortcomings, we can define a set of desired charac-

teristics for Lichen.

3.1 Analyze a variety of program fragments for similarity.
Lichen’s first objective is to analyze more than just the structure of student code. Every student

code submission can be broken down into sets of fragments. Fragments are sets of data that can
be the targets of separate similarity analyses. Examples of fragments are comments, string literals,
variable names, and abstract syntax trees.

3.2 Identify similar and rare fragment pairs.
Lichen aims to determine how similar fragments are to each other and how dissimilar they are

from others fragments. The problems of similarity and rarity are quite different. As a motivating
example, consider two students who have chosen the unusual variable name zebra1. This string
pair has high similarity, however, the pair’s rareness is determined by the frequency of variables
named zebra in the greater submission pool. Consider the following scenarios.

1. If only these two students have variables named zebra, then this fragment pair is extremely
interesting. This provides strong evidence that the submission pair may be the result of
cheating.

2. These are the only two students with variables named zebra, however, there are other sub-
missions with variables such as zebra1, Zebra, Zebra2. This may indicate a cluster of sub-
mission pairs that are the product of cheating, or it may indicate that this fragment is not par-
ticularly interesting. In other words, the number of submissions and how similar/dissimilar
variable names in those submissions are determines whether the zebra pair is interesting or
not.

3. If all students have a variable named zebra, then this fragment pair is not interesting and
provides no evidence that the submission pair is the result of cheating.

3.3 Quantify the similarity and rarity of a submission pair.
Lichen intends to quantify the similarity and rarity of submissions pairs. This quantification

will describe the likelihood that the similarity and rarity of all fragment pairs within a submission
pair occurred by chance. It is important to note here that this probability is not the probability that
a pair of students cheated on an assignment. Rather it is the probability that the magnitude of the
similarity and rarity of this pair can be prescribed to chance alone. Low probability submission
pairs are not guaranteed to be the result of cheating. There can be other reasonable explanations for
the observed similarity and rarity in a submission pair. Faculty using Lichen will have to examine
the results and decide for themselves whether the similarities and rarities are the results of cheating.

This probability can then be used to calculate the number of submission pairs that are expected
to display this degree of similarity and rarity in a population of a particular size. An expected value
of 1 is not at all compelling; however, an expected value of one in one million is quite compelling.
By using the expected number of submission pairs, we account for similarities occurring by chance

1This example comes from a real case of cheating. The first time my advisor caught a pair of students cheating was
when both students named variables zebra in an assignment unrelated to zebras.

3

more often in a larger number of submissions. For example, 100 students form 4950 pairs of sub-
missions. A pair with probability 1/4,950,000 would have an expected value of 1/1000. However,
if there were 1000 students, resulting in 499,500 pairs, then the same probability would have an
expected value of only 1/10.

3.4 Provide insight into evidence.
Although the submission pairs that Lichen finds statistically unlikely are not guaranteed to be

the result of cheating, we hope to facilitate a professor’s understanding of Lichen results by creat-
ing a human-readable report that explains why each submission pair was identified as interesting.
These insights will be presented in plain-English and in a format that students, administrators, and
educators alike can understand. This report aims to decrease the amount of time that a professor
needs to spend deciphering the results of our cheating detector. We also intend for this report to be
written in such a way that it could be handed directly to an accused student, the university admin-
istration, or other faculty should a professor decide the evidence is compelling enough to accuse a
pair of students of cheating.

4 Lichen
Lichen’s architecture is divided into 6 phases: Build, Compare, Measure, Score, Calculate, and

Report. Each phase is described in more detail in the sections that follow. A general overview of
each phase is provided here. The overall architecture is also shown Figure 2.

1. Build. Convert student code submissions into sets of fragments to be analyzed.
2. Compare. Compare every fragment to all other fragments in every submission. This phase

computes the distance of every pair of fragments.
3. Measure. Measure the distance of fragment pairs from other fragments in the population.

This phase computes the near set and frontier sets of each fragment pair. At a high level,
near and frontier sets are sets of fragments located at increasing distances away from the
pair itself. These terms are defined in more detail later in the paper.

4. Score. Score fragment pairs based on the results of the Compare and Measure phase. This
score captures the similarity and rarity of a fragment pair in a single value.

5. Calculate. Convert the results of the Score phase into probabilities. Once the probabilities of
all fragment pairs have been computed, filter independent fragment pairs for each submission
pair and compute the expected number of submission pairs with this many independent,
similar, and rare fragment pairs.

6. Report. Create human-readable reports for low-probability submissions pairs explaining the
compiled evidence.

Figure 2: Overview of Lichen architecture.

4

4.1 Build

Figure 3: Build phase.

int main(void) {
printf("Hello world");
return 0;

}

Figure 4: AST of a simple program.

Lichen’s first goal is to analyze a variety
of program fragments for similarities. In or-
der to do this, Lichen must break down stu-
dent submissions into sets of fragments to com-
pare for similarity. This is accomplished by
partially compiling a student code submission
using ANTLR, a parser generator for reading,
processing, executing, and translating struc-
tured text or binary files [6]. The first step of
compilation is lexing [7]. In this step, code is
tokenized and white spaces and comments are
removed. In order to analyze the comments in
student code submissions, we needed to lexify
student code in two different ways.

One lexer tokenizes student submissions in
the traditional way—white spaces and com-
ments are ignored. The product of this lexer is
used in the second step of compilation to con-
struct an Abstract Syntax Tree (AST). An AST
is a tree representation of the source code [7].
An example of code compiled into a simplified
AST is shown in Figure 4. Each node of the
tree corresponds to a functional element in the
code. This tree provides Lichen insight into the
execution of the student program and will be
used for semantic similarity analysis. The AST also provides us variable names and function
names for string similarity analysis.

The second lexer does the opposite of a standard lexer—student code is ignored and comments
are not. This backward approach led us to name this second lexer the antilexer. The antilexer
produces comments and string literals for analysis. String literals were included in the antilexer
because they have relatively simple grammar rules—anything between double quotes is considered
a string literal. On the other hand, defining grammar rules in the antilexer for variable names and
function names would have greatly complicated the antilexer grammar. For this reason, variable
and function names are derived from the AST while comments and string literals are derived from
the antilexer.

4.2 Compare
The Compare phase is responsible for quantifying the distance between all fragment pairs.

There are two distinct categories of distance metrics that Lichen currently supports: string distance
metrics and tree distance metrics. Our initial approach to string and tree distance metrics are
described in the sections below. At the end of this phase, Lichen has created a ranked list of the
best matches for every fragment in every submission. This ranked list contains at least one closest
match from all other submissions in the population. A submission will not be represented in this
list only if the unrepresented submission had no instance of a particular fragment. For example, in

5

a submission population of 100 submissions, if one submission did not have any comments, then
every fragment in every submission would have 98 best matches in their ranked list instead of 99.
4.2.1 String Distance Metrics

String distance metrics are used to compute the difference between pairs of string literals, com-
ments, variable names, and function names. There are many well-known string distance metrics. In
preliminary testing of Lichen, string distance was computed using the Levenshtein distance metric.
Levenshtein distance is computed by applying one of three transformations to a pair of strings: in-
sertion, adding a new character; deletion, deleting a character; and substitution, replacing one char-
acter with another [8]. Each of these transformations increases the distance of a pair of strings by 1.

Figure 5: Levenshtein distance.

Figure 5 provides an example of calculating the Levenshtein edit
distance of two strings. There are many advantages and disad-
vantages to using different types of string distance metrics. We
explored other options such as Cosine distance, Jaro-Winkler dis-
tance, and others [9]. This set of distance metrics is normalized
and return distances between 0 and 1, where the former is the least
similar value and the latter is the most similar value. We decided to
use the Levenshtein distance metric because the reasoning behind
the distance given to a pair of strings is more straightforward to un-
derstand. After testing the Lichen system we have identified some
undesirable properties of the Levenshtein edit distance metric for our particular use case. For this
reason we look to develop our own distance metric for strings in the future.
4.2.2 Tree Distance Metrics

Determining the distance of a pair of AST fragments is a more difficult problem than finding
the distance between two strings. Unlike strings, there are no off-the-shelf options for tree distance
metrics. As a result, we had to develop our own. We approached this problem knowing that we
are trying to identify the intentional obfuscation of cheating by students. When students attempt
to hide cheating, they apply a set of semantic-preserving transformations to their program so that
it executes the same but looks different than the student they copied from. With this in mind, we
developed a distance metric where Lichen applies a set of known semantic-preserving transforma-
tions to an AST pair until the two AST fragments become equal. In cases where trees are quite
different, it is impossible to transform one submission into another with only semantic-preserving
transformations. For this reason, Lichen may need to apply non-semantic-preserving transforma-
tions. Semantic preserving transformations contribute less to the overall distance between a pair
of tree fragments than non-semantic-preserving transformations. There is also a set of transfor-
mations that may or may not preserve the semantics of the program. The three categories of tree
transformations are summarized in Table 1.

Transformation Type Cost Examples

Semantic-preserving low
For <->while loop,
In-line function

Maybe semantic preserving medium
Reorder statements,
Loop transposition

Non-semantic-preserving high
Adding a subtree,
Removing a subtree

Table 1: Summary of three categories of tree transformations

6

Tree Distance Example
In order to better demonstrate Lichen’s approach to finding the distance between two AST

subtrees, consider the transformations that need to take place in order to make the code samples in
Figure 6 equivalent. At first glance these programs may look quite different.

Code A
1 int square (int x) {
2 return x * x;
3 }
4

5 int main(void) {
6 for(int i = 0; i < 42; i++){
7 printf("%d: %d", i, square(i));
8 }
9 }

Code B
1 int main(void) {
2 uint32_t y = 0;
3 while (y < 42) {
4 int temp = y * y;
5 printf("%d=> %d", y, temp);
6 y++;
7 }
8 }

Figure 6: This pair of programs can be transformed into one another by applying six semantic-preserving
AST transformations.

Figure 7 demonstrates how six transformations can be applied to Code A to turn it into Code B.
Each transformation in Figure 7 is labeled with a letter A–G. Transformations A–G are described in
detail below. For each transformation applied to Code A, a code snippet is provided to demonstrate
how the previous version of Code A is modified. Changes at each step are highlighted in yellow.
Note that these transformation do not actually occur on the file itself. Rather, these transformations
are applied to the AST representation of the programs as shown in Figure 7.
(A) Extract square call to local variable.

1 int square (int x) {
2 return x * x;
3 }
4

5 int main(void) {
6 for(int i = 0; i < 42; i++){
7 int temp = square(i);
8 printf("%d: %d", i, temp);
9 }

10 }

On line 7 of Code A, a call is made to
square(i). This call is the second parameter of
the function printf. Observe that on line 6 of
Code B, there is a variable temp passed in as the
second parameter to the same printf function.
The first transformation applied to Code A is to
extract the call to square to a variable declara-
tion before the call to printf.

(B) In-line square function.

1 int square (int x) {
2 return x * x;
3 }
4

5 int main(void) {
6 for(int i = 0; i < 42; i++){
7 int temp = i * i ;
8 printf("%d: %d", i, temp);
9 }

10 }

The square method in Code A does the same
thing as the initializing statement of the variable
temp in Code B on line 4. square is in-lined by
replacing the call to it with the function’s body.

7

(C) Remove the unused square function declaration.

1 int main(void) {
2 for(int i = 0; i < 42; i++){
3 int temp = i * i;
4 printf("%d: %d", i, temp);
5 }
6 }

Once the call to square has been in-lined, there
are no other references to square in Code A.
Therefore, we can remove the declaration of the
square function entirely.

(D) Transform for to while loop.

1 int main(void) {
2 int i = 0;
3 while (i < 42){
4 int temp = i * i;
5 printf("%d: %d", i, temp);
6 i++ ;
7 }
8 }

A for loop can be transformed into a while loop
without changing the execution of the program
by rearranging statements in the for loop declara-
tion: first, move the initialization of the variable
i, int i = 0, outside the loop; second, move
the statement that increments i with every itera-
tion, i++, to the end of the loop’s body.

(E) Rename i to y.

1 int main(void) {
2 int y = 0;
3 while(y < 42){
4 int temp = y * y ;
5 printf("%d:%d", y , temp);
6 y ++;
7 }
8 }

Next, the name of variable i is changed to y. This
involves changing the declaration of the variable
as well as all references to the variable later in the
program.

(F) Swap similar C++ type int with uint32_t

1 int main(void) {
2 uint32_t y = 0;
3 while(y < 42){
4 int temp = y * y;
5 printf("%d:%d", y, temp);
6 y++;
7 }
8 }

The renamed variable y is declared with type
int. On line 2 of Code B, the variable y is de-
clared with type uint32_t. These C++ types are
functionally equivalent when the number being
stored in them are positive [10]. They can be in-
terchanged without changing the behavior of the
program.

(G) Make the string literals in the printf function calls equivalent.

1 int main(void) {
2 uint32_t y = 0;
3 while(y < 42){
4 int temp = y * y;
5 printf(%d=> %d , y, temp);
6 y++;
7 }
8 }

The only remaining difference between Code A
and Code B is the string literal printed by the
call to printf. Code A has ”%d : %d” while
Code B has ”%d => %d”. Once this transfor-
mation is applied, the submissions are equivalent.
Note that this transformation is non-semantic-
preserving.

8

Each transformation contributes some amount to the overall distance of Code A and Code B. A
hypothetical distance for Code A and Code B is computed in Table 2. Transformations A–F have
low costs because they are semantic-preserving. Transformation G has a higher cost because it is
non-semantic-preserving.

Transformation (A) (B) (C) (D) (E) (F) (G) Total distance
Cost 1 1 1 1 1 1 3 9

Table 2: Each transformation contributes to the distance between AST fragments.

Figure 7: The transformations described on pages 7–8 are applied on the AST representations of Code A
and Code B.

9

4.3 Measure: Near & Frontier Sets
At this point in the analysis, Lichen has quantified the distance between every pair of fragments.

The next step is to determine how rare the similarity between a pair of fragments is. Rarity of a
fragment pair is determined by building the near set and frontier sets for all fragment pairs. As
shown in Figure 8, the near set of (A, B), an arbitrary fragment pair with distance 4, is comprised
of all fragments that are at most a distance of 4 from either A or B. The near set is therefore {C,
D} because fragment C is a distance of 3 from B, and fragment D is a distance of 4 from A. The
frontier sets of (A, B) are constructed by finding all fragments that are distance x away from the
pair, where x is greater than the distance between (A, B). A frontier set at distance x will be denoted
as Fx. In Figure 8, the frontier set at distance 5, F5, is empty. The frontier set at distance 6, F6,
is {E, F}. Both E and F are a distance of 6 away from either A or B. To build a complete set of
frontier sets for (A, B), the distance would continue to be incremented until a fragment from all
submissions has been included in a frontier set.

Figure 8: Illustration of near and frontier sets for an arbitrary fragment pair (A,B)
.

When the distance of a pair of fragments is considered in conjunction with its near and frontier
sets, the rarity of the pair becomes more clear. This relationship is shown in Figure 9. Figure 9 is
best explained by using the zebra example provided in the Goals section of this paper. The top
left quadrant of this chart describes scenario 1. Two students used an extremely similar fragment
pair such as zebra and Zebra, and there were no other strings similar to them in the population.
This fragment pair is extremely interesting. The top right quadrant describes scenario 2. This
diagram shows a similar string pair such as zebra and Zebra, but there are many other zebra-like
identifiers nearby: another two variable names with a distance of 0 or 1 from A or B are found in
the near set and all remaining best matched strings in the population are found within two frontier
sets of the (A, B). This fragment pair is less interesting than the previous example. The bottom left
quadrant describes a string pair that has a larger distance—for example, zebra and ZebraParty.
This pair has no other strings in its near set, and all other strings in the population are far away.
This fragment pair may or may not be interesting depending on how large the distance between

10

the fragments is and how close the nearby strings are. The bottom right quadrant shows scenario
3 for a fragment pair such as zebra and ZebraParty where all other strings in the population are
within the near set of this pair. This pair is not interesting. Most fragments will fall into this last
category.

Figure 9: The relationship between the distance of a fragment pair and the number of nearby fragments
allows Lichen to identify the similarity and rarity of a fragment pair.

4.4 Score

Figure 10: Scoring near and frontier sets.

The Score phase aims to combine the re-
sults of the Compare and Measure phases into
a single number per fragment pair. We cre-
ated a scoring function based on the principles
described in Figure 9. In particular, we want
the result of this function to be higher for frag-
ment pairs with near/frontiers sets in the up-
per left of this figure. We want this function
to output lower scores for fragment pairs with
near/frontier sets found bottom or right-hand
portions of the figure. Accordingly, we built
a function that for any fragment pair, starts from the pair’s distance d and near set N, and iterates
outwards to further and further frontier distances. At each frontier, the score is increased. The
amount the score increases depends on the distance of the frontier and the number of fragments
that can be found up to that frontier. Both of these variables impact the score added at a particular
frontier based some score gradient function f(x), a decreasing function. The scoring gradient f

11

will be discussed in more detail later in this section.
Figure 10 demonstrates how the near and frontier sets of an arbitrary fragment pair (A,B) are

scored. The overall score of the fragment pair, S(A,B), is sum of scores contributed by the near set
and all frontier sets. First, the near set of the pair contributes a score s0. This initial score is the
product of f(4) and f(2) since the pair has a distance of 4 and its near set contains 2 fragments. Next,
the frontier set at distance 5 is visited and contributes a score s1. The value of s1 is the product
of f(5) and f(2) since the frontier’s distance is 5 and there are no fragments at this frontier. The
next frontier contributes score s2. The value of s2 is the product of f(6) and f(4) since the frontier’s
distance is 6 and the frontier set F6 contains two fragments. This continues until we reach a fixed
distance that is considered the maximum frontier from any fragment pair.

The score of a fragment pair (A,B) with distance d, near set N, and frontier sets {Fd+1,Fd+2,
Fd+3, ...Fn} can be summarized as:

SA,B =
n

∑
i=d

f (i)∗ f (|N∪
i⋃

k=d

Fk|) (1)

4.4.1 Scoring Gradient Function
The scoring gradient function f can be any decreasing function. In other words, f must give

higher weight to fragment pairs with low distance and few accumulated fragment pairs. When
developing our own f we also realized that there is a point for both distance and number of nearby
fragments where no additional information is gleaned. In the case of distance, this point can be
thought of as the frontier distance at which a fragment pair would be more different than similar
from fragments found at further frontiers. In the case of accumulated nearby fragments, this point
can be thought of as the point at which a critical mass of submissions have been represented in the
accumulated fragments. Nearby fragments found beyond this point merely reinforce the fact that
the fragment pair is not rare. For this reason, we define the idea of a useless point. A useless point
is defined as the point at which the score contributed by distance or accumulated nearby fragments
goes to 0. We developed the following scoring gradient function f for initial tests of Lichen.

f (x) = max(0,1− k ∗ x) (2)

In Equation 2, k is the slope between (0,1) and (useless point, 0); x is either the distance away
from fragment pair or the number of accumulated nearby fragments. Observe that this function
meets the expectations outlined above. The maximum value of the scoring function is 1. The
function returns 1 if the distance or number of accumulated fragments is 0. Further, the value f(x)
is inversely proportional to x.

Finally, it is important to note what we defined the useless points of distance and of accumu-
lated nearby fragments to be. In the case of accumulated nearby fragments, the useless point was
defined as one-fifth of the submissions in the population are represented within the accumulated
nearby fragments. In the case of distance, we defined the useless point to be when the distance
away from the fragment pairs has reached the average length of the fragment pair and all accumu-
lated nearby fragments.
4.4.2 Scoring Case Study

In this case study we compare the behavior of the scoring function and the scoring gradient
function on two pairs of comments from a real runs of Lichen. String similarity analysis was
performed on the comments of an assignment with 146 unique student submissions, 3 of which

12

Comment 1 Comment 2 Levenshtein
Distance

Score Gradient ScoreNear Set F1 F2 F3 F4 F5 F6 F7 F8
wrong command wrong command 0 1.0 .89 .82 .75 .40 .25 .15 .10 0 4.81
wrong command wrong commend 1 .89 N/A .82 .75 .40 .25 .15 .05 0 3.31

Table 3: Comparison of scoring of comment pair (wrong command, wrong command) and (wrong
command, wrong commend).

had no comments. Note that the useless point for nearby fragments is therefore 29 comments.
Each comment in each pair is identified with the submission it comes from in parentheses. Pair A,
(wrong command (s324), wrong command (s121)), has distance 0. Pair B (wrong command (s324), wrong
commend (s149)) has distance 1. Observe that wrong command (s121) will be in the near set of Pair B.
For this reason we expect Pair A to be scored higher than Pair B.

(wrong command, wrong command) (wrong command, wrong commend)

Figure 11: Comparison of the scoring of (wrong command, wrong command)
(right) and (wrong command, wrong commend) (left). The top graphs show
the accumulated nearby comments. The bottom graphs show how score
gradient function scores each frontier.

The behavior of the
score gradient function for
Pair A and Pair B can be
seen in Table 3 and Figure
11. Pair A has no com-
ments in its near set and has
a distance of 0. As a re-
sult, it receives the maxi-
mum score possible for its
near set, 1. On the other
hand, the distance of Pair
B is larger and its near
set contains one comment.
Pair B’s near set receives a
lower score than Pair A’s.
For Pair A, F1 contains one
comment. F2, F3 are empty.
Pair B does not have a
F1 since its near set ex-
ists at this distance. Pair
B’s F2, F3 are also empty.
The scoring gradient func-
tion outputs steadily de-
creasing values for fron-
tiers 1, 2, and 3. At frontier
4, 11 nearby comments are
found for both Pair A and
Pair B. Adding this quan-
tity of nearby comments
causes a sharp decrease in
the output of the score gradient function between frontiers 3 and 4. After frontier 4, the score
gradient function result continues decreasing at the same rate for both pairs until frontier distance
7. This pattern exists because the number of accumulated nearby comments and the distance are
growing at the same rate for both pairs. At frontier distance 7, however, we see that Pair A’s F7

13

contains 2 comments, while Pair B’s F7 contains 4 comments. For this reason the score gradient
function outputs a higher score at frontier 7 for Pair A than Pair B. At frontier distance 8, Lichen
stops iterating. Notice that the number of accumulated nearby comments exceeds the useless point
of 29 at this frontier. As a result, the score gradient function returns 0. In the end, we can observe
that the scores of Pair A and Pair B fulfill our expectations. Pair A is scored 4.81 and Pair B is
scored 3.31.

4.5 Calculate
The Score phase converted the rarity and similarity of every fragment pair into a single number

per pair. The Calculate phase now aims to convert each score into a probability describing the
likeliness that the magnitude of a fragment pair’s similarity and rarity can be attributed to chance.
Low probability fragment pairs are kept as potential evidence of cheating for the submission pair
the fragment pair originated from. An evidence pool is built up for every submission pair. This
pool contains the most interesting fragment pairs for each submission pair. Once the evidence pool
has been constructed, the likelihood that a particular submission pair’s similarities can be attributed
to chance is computed by taking the product of independent fragment pairs in its evidence pool.
This processes is summarized in Figure 12.

Figure 12: Calculate phase.

4.5.1 Score Distribution
Lichen creates an exponential distribution from the set of highest scored fragment pairs from

every submission. The subset of highest scored fragment pairs is used to construct the distribution
instead of the complete set of scored fragment pairs because we are ultimately looking for the
probability that the similarity and rarity of all evidence for a submission pair can be attributed to
chance. We are not looking for the probability of the similarity and rarity of the fragment pairs
themselves. If we created the distribution from the larger population of scored fragment pairs, we
would get unreasonable results. For this reason, only the highest scoring pairs are used to construct
the distribution.

An exponential distribution is typically appropriate when used to model either the rate that
events occur—for example, the time between earthquakes—or the intensity of an event—for exam-
ple, the magnitude of earthquakes. Lichen’s similarity and rareness scores measure the intensity of
an event—the magnitude of the combined similarity and rarity of a fragment pair. The exponential
distribution is therefore appropriate. The decision to use the exponential distribution is supported
empirically by examining the observed scores and the exponential distribution fit to them. Con-
sider the comparison of the observed and expected values of comment and string literal scores in
a run of Lichen in Figure 13. The exponential distribution is then used to calculate P(X >= score)
for each fragment pair. Fragment pairs that are outliers are added to the evidence pool of their
submission pair.

14

Figure 13: Score distribution approximately follows an exponential distribution.

Figure 14: Example of string independence filtering for Levenshtein edit distance metric.

4.5.2 Independent Evidence Filtering
At this point in the analysis, every submission pair has a pool of interesting evidence associated

with it. The pool of evidence for every submission pair must now be filtered so that only indepen-
dent evidence is used to compute the overall probability that the submission pair’s similarity and
rareness can be attributed to chance. Independence of fragment pairs is determined differently
depending on the distance metric used and the type of fragment being considered. Consider the
evidence pool for an arbitrary pair of submissions shown in Figure 14. The evidence pool contains
three interesting string pairs. Observe that pairs 1 and 2 in the evidence pool are not independent.
This is because if a student submission already contains one zebra-like variable name, then it is
more likely to have other zebra-like variable names. Therefore, pairs 1 and 2 are not independent.
We are not aware of any standard methods for determining the independence of two strings.

We define two strings to be independent of each other if their edit distance is more than half
their average length. We define two string pairs to be independent when both strings in the pair are
independent of each other. Put another way, taking ⊥ to mean independence

(A1,B1)⊥ (A2,B2) ⇐⇒ dist(A1,A2)>= length(
A1 +A2

4
)
∧

dist(B1,B2)>= length(
B1 +B2

4
) (3)

4.5.3 Ranking submission pairs
The likelihood that a submission pair’s similarity and rarity can be attributed to chance is

calculated by taking the product of the probabilities of its independent evidence. This probability
is then multiplied by the total number of submissions pairs in the population. For a population of
submissions of size N this would be N∗(N−1)

2 . This new value represents the number of submissions
pairs in a population of size N that are expected to display this same degree of similarity and rarity.
This value is computed for all submission pairs.

4.6 Report
In the final Lichen phase, human-readable reports are constructed for submission pairs whose

similarity and rarity are unlikely to be attributed to chance. This report contains descriptions of

15

the analyses performed, interesting evidence gathered for each analysis, and supporting charts
and figures. Figure 11 is an example of a chart that will appear in reports. Professors will be
able to customize reports to include assignment descriptions and other course-specific information.
This report will be written in language that can be easily understood by students, educators, and
university administrators alike. Should a professor decide that the evidence described in the report
is indeed indicative of cheating, the report can be submitted directly to university administrators.

5 Results
Preliminary testing of Lichen has yielded promising results. Lichen was tested on data from

three real C/C++ assignments. The submission for each assignment were anonymized by my advi-
sor. My advisor also provided an anonymized list of the submission pairs within each assignment
that had been accused of cheating and successfully convicted of cheating on the assignment. Please
note the expected cheating pairs list does not contain information about student pairs accused of
cheating in semesters when my advisor was not teaching. The number of submissions for each
assignment ranged from 146, 319, to 437. The expectations for running Lichen on these three
assignments are summarized here.

1. All expected cheating pairs are identified. For a particular assignment, we expect Lichen to suc-
cessfully identify all expected cheating student pairs as having similarities that are extremely
unlikely to have occurred by chance.

2. New cheating pairs are identified. We also expect Lichen to identify pairs of submissions that
likely cheated but were undetected by both Moss and graders of the assignment. In addition,
we expect many high ranking student pairs that are not in out expected set will reflect stu-
dents who cheated on the assignment during semesters when my advisor was not teaching.

3. Low false positive count. We expect few false positives. Ideally, false positives can be eas-
ily explained. We expect to gather insights about how to improve Lichen from these false
positives.

One of the reasons we may be unable to achieve the above results is because Lichen currently
only supports string similarity analysis of comments, string literals, function names, and variable
names. We are unable to report the results of AST similarity analysis at this time. This is elaborated
on in the Future Work section of this paper. Even though Lichen only performed string similarity
analysis in these runs, the results are quite satisfactory. Consider as a case study the assignment
with 146 submissions.

5.1 Case Study
This assignment comes from a graduate-level Electrical & Computer Engineering course at

Duke University. This assignment has been given for multiple semesters of this course. Collabora-
tion was explicitly prohibited for the assignment across all semesters. Five pairs of students have
been accused and convicted of academic dishonesty on this assignment. These pairs are identified
with the letters A–E. The following list provides some context for the cheating pairs.

1. Pairs A–D contain submissions from two students from the same semester who collaborated.
2. Pair E contains submissions from two students who both copied code from Github, an online

code sharing, and version management platform.

16

5.1.1 Results for Expected Cheating Pairs
Of the five expected pairs, Lichen ranked three within the top 10 most unlikely submission pair-

ings; one as the 20th most unlikely pairing; and one as the 32nd most unlikely pairing.

Expected
Pairing

Expected number of
submission pairs with

this degree of similarity
Ranking

A <10−12 4
B <10−12 7
C <10−12 9
D 1.5×10−5 20
E 1.1×10−4 32

Table 4: Results for expected cheating pairs A–E.

Submission pair ranking along with the ex-
pected number of submissions with this level
of similarity and rarity are summarized in Ta-
ble 4. The results are satisfactory for all ex-
pected pairs. For A–C, Lichen expects one in
one trillion submission pairs in a population of
this size to exhibit the same magnitude similar-

ity and rarity. For D, Lichen expects one in 150,000 submission pairs in a population of this size
to exhibit the same magnitude similarity and rarity. Finally for E, Lichen expected one in 11,000
submission pairs in a population of this size to exhibit the same magnitude similarity and rarity.
5.1.2 Lichen Identifies New Cheating Pairs

Lichen has also identified some cheating pairs that were not in my advisor’s set of expected
cheating pairs. We give detailed examination to one particular pair, Pair F. Upon showing Lichen
results about Pair F to my advisor, he looked at them and the code and was convinced the students
had cheated within a matter of minutes. The most convincing pieces of evidence came from a
unique comment and unique string literal inside an identical region of code.

This pair had gone unnoticed by my professor previously because Moss had ranked it as the
233rd most similar pair in the population. It determined that only 4–14% of code was common
between these two submissions. My advisor said he would have been unlikely to look at the 233rd
Moss result to check for cheating. He also noted that even if he had looked at this match from
Moss, the highlighted similarities were uninteresting.

Lichen, on the other hand, ranked this pair as the 8th most unusual pair in the population.
Lichen expects 1 in 1 trillion submission pairs to display their magnitude of similarity and rarity.
A collection of interesting fragment collected for Pair F is shown Table 5. Observe that in addition
to being quite similar, the fragments are also rare. The closest matching fragments in other submis-
sions are dissimilar to the fragment pairs themselves. We note here that one of the students in this
pair had a comment referencing a variable pnew even though their code had no variable with that
name. Moss was unable to identify the similarity in Pair F because it does not take into account
the similarity between string literals and comments.

Fragment 1 Fragment 2
Probability

of Similarity
and Rarity

Closest matching
Fragment In Another

Submission
For the id’s that aren’t allowed to
contain numbers use this function

For the id’s that aren’t allowed to
contain numbers use this function 3×10−8 N/A2

pnew = pcurr + gamma*gradient(fcurr) pnew = pcurr + gamma*gradient(f,pcurr) 8×10−6 pnew = pcurr + gamma * gradient f of pcurr
This string contains a number. Invalid Id.\\n This string contains a number. Invalid Id.\\n 2×10−8 This function name is invaild\\n

Table 5: Pair F’s most unusual comments and string literals.

5.1.3 False Positives
There were some false positives in the results of this case study. These false positives were

easy to explain and provide motivation for improving Lichen string analysis. We have categorized
three types of false positives and address how we plan to avoid these false positives in the future.

2There were no other comments in the submission population with an edit distance of less than 25 from this
comment pair.

17

1. Comments provided in the template code. Professors may give some amount of template code
and comments with every assignment. Students can either keep these provided fragments, or
they can delete them. Several false positives were observed when students kept descriptive
comments provided by the professor. This can be prevented in the future by feeding Lichen
the template code and comments provided to students and disregarding fragments that match
these templates in the similarity analysis.

2. Similarities between strings in different contexts. The context of a string literal or comment is
something that Lichen does not currently take into consideration. For this reason, there
were several false positives attributed to commonalities between strings that were used in
completely different parts of the coding assignment. In the future, we hope to take the
location of strings in the source file into account when performing a similarity analysis.

3. Commented out print methods. It is common practice for students to use print statements as
a debugging method. Students may not delete these print statements and instead opt to
comment them out. We noticed a couple false positives where the unusual comment pairs
were commented out print statements. Printing functions are standard library functions—
meaning that if a student wishes to print something, they have to use the same syntax. The
similarities in these false positives could be attributed to the universal syntax for printing.

6 Future Work
Lichen is a work in progress. Many features still need to be developed for this tool to reach its

full potential.

6.1 AST Similarity Analysis
There are two primary reasons why we are unable to report results including AST similarity

analysis. Lichen was first tested on C/C++ assignments. The ASTs for these submissions were
constructed using an ANTLR-provided C/C++ lexer and parser [6]. We have noticed significant
flaws in the C++ ANTLR grammar. Of particular concern is the grammar’s inability to distinguish
type names from value names. This error leads to the incorrect parsing of various type names. One
example is template types.

Figure 15: Incorrect and correct parses of
vector<list<string>>.

A template type name is a type of the for-
mat template_type<...>. The ellipse is filled
with another type name. For example,
vector<list<string>> is a template type vector
with a nested template type list of type string.
Consider the example in Figure 15. For
the variable declaration vector<list<string>>
foo; we would expect to see an AST fragment
rooted at a variable declaration node with name
foo and a subtree containing a the nested template type vector<list<string>>. Instead, we can see
that ANTLR parses the variable declaration as an expression. In plain English, the ANTLR parse
can be described as: vector is less than list is less than string; right shift foo by the result of
the previous relational expression. After further investigation, it appears there is no satisfactory
ANTLR C++ grammar readily available. We have identified several ways to fix this problem,
however, they are all quite hacky. We have idea for an elegant solution that involves pre-parsing
C++ to differentiate type names from other identifiers by iterating to a fixed point.

18

Figure 16: Reproduced ASTs for Code A and Code B from Figure 7 which color coded matching fragments.
Algorithmically deciding this matching has proven to be a difficult task.

Another roadblock for AST similarity analysis is matching up two different ASTs in order to
transform one into the other. This matching problem involves deciding when and where to apply a
transformation on different trees. Consider again the ASTs for Code A and Code B from our Tree
Distance Example in 7. These ASTs are reproduced in Figure 16 with their matching subtrees are
color coded. Algorithmically determining this matching, which we call correspondence mapping, has
proved to be quite challenging. For instance, nodes may correspond to things that are far away.
Consider the case of the purple * subtree. In Code A, this subtree is in the the body of the square
method; however in Code B, this subtree is in the initializing expression of a variable declaration
in the body of a while loop. Another challenge is posed by the fact that subtrees that match may
be completely different node types. For example, the rightmost child of the the orange subtree—
which represents the call to printf—is a Call in Code A, but an ID in Code B. These problems
are exacerbated further in a real program, where there are many instance of the same structures,
such as loops. The reason that matching is a crucial step in tree similarity analysis is because in
many cases of cheating, only parts of a program are copied and not others. We note that when the
correspondence between trees is hand mapped, Lichen can perform transformations successfully.

Our most recent idea is inspired from decision tree classification algorithms [11]. At a high
level, we plan to use the transformations Lichen knows of to determine which parts of a pair of
ASTs can be transformed into one another. Lichen will then apply all possible transformation to
the root node. Then repeat this process of identifying the transformations that can be applied and
apply them all for all children. This continues recursively until the pair becomes equal. We would
then select the minimum cost transformation sequence.

6.2 Semantic grep
grep is a command-line tool that allows a user to search for a text pattern in a file system. This

tool can be used as a powerful tool to identify unusual strings in submissions. For example, if a
student uses an unusual variable name such as zebra, a professor can search through all submissions
for an assignment to see if any other students used a variable named zebra. This sort of search,
however, is not as easy for structural peculiarities in code. Consider the pair of coding fragments
taken from a real case of cheating in Figure 17. Given the context of the assignment, my advisor
found the left-hand-side snippet to be an extremely peculiar approach to the assignment. He also
noticed that another student had a similarly peculiar approach, captured in the right-hand-side code
snippet. It appears as if small structural manipulations were made to conceal the fact that these
two students approached this part of the assignment in the same way. It would be useful to have a

19

1 uint64_t lowerthanhalf =
2 pop / 2 - pop / 200;
3 uint64_t higherthanhalf =
4 pop / 2 + pop / 200;
5

6 if (pop % 2 == 1) {
7 if (pop % 200 > 100) {
8 higherthanhalf++;
9 }

10 else {
11 lowerthanhalf++;
12 }
13 }

1 halfpop = pop / 2;
2 pop_by_200 = pop / 200;
3

4 lower = halfpop - pop_by_200;
5 upper = halfpop + pop_by_200;
6 if (pop % 2 == 1) {
7 if (pop % 200 < 100) {
8 lower++;
9 } else {

10 upper++;
11 }
12 }

Figure 17: Structurally similar code that is the target of semantic grep. Standard grep cannot search for
similarities like this.

semantic grep tool that allowed professors to quickly search a body of code submission for similar
AST fragments. Such a tool would have allowed my advisor to quickly identify that these were the
only two students who approached this particular part of the assignment in this unusual way.

7 Conclusion
Lichen is a new cheating detection tool that aims to decrease the amount of time professors

spend on identifying and reporting cheating on programming assignments. Lichen’s approach
to cheating detection is different from today’s most-used cheating detection tool, Moss. Unlike
Moss, Lichen’s similarity analysis accounts for submission components such as comments, func-
tion names, variable names, and string literals. Lichen also provides greater insight into the flagged
similarities between submissions. My advisor is excited about the preliminary results of Lichen.
We look forward to continuing to work on Lichen in order to submit a paper to an educational con-
ference in the future. In the long term, we aim to open source Lichen so that educators everywhere
can use it.

References
[1] Duke University. 2019-2020 Duke Community Standard in Practice. 2020.
[2] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms for document fingerprint-

ing. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD
’03, page 76–85, New York, NY, USA, 2003. Association for Computing Machinery.

[3] K. W. Bowyer and L. O. Hall. Experience using "moss" to detect cheating on programming assignments. In
FIE’99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science
and Engineering Education. Conference Proceedings (IEEE Cat. No.99CH37011, volume 3, pages 13B3/18–
13B3/22 vol.3, 1999.

[4] Christian Collberg and Ginger Myles. Cheating cheating detectors. 04 2004.
[5] Gen Chang. How-to-cheat-in-computer-science-101, 2015.
[6] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013.
[7] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1997.
[8] V. I. Levenshtein. Binary codes capable of correcting spurious insertions and deletions of ones. 1965.
[9] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of string distance metrics for

name-matching tasks. In Proceedings of the 2003 International Conference on Information Integration on the
Web, IIWEB’03, page 73–78. AAAI Press, 2003.

[10] CPP Reference. Fundamental types, Oct 2020.
[11] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Classification: Basic Concepts and

Techniques, page 113–192. Pearson Education, Inc., 2 edition, 2019.

20

